精英家教網 > 高中數學 > 題目詳情
(Ⅰ)寫出圓(x-a)2+(y-b)2=r2經過原點的充要條件.(只寫不證)
(Ⅱ)已知命題p:?x0∈R,x02+2x0+2=0,寫出命題p的否定¬p.
考點:充要條件,命題的否定
專題:簡易邏輯
分析:(I)把(0,0)代入即可得出;
(II)利用¬p的定義即可得出.
解答: 解:(Ⅰ)寫出圓(x-a)2+(y-b)2=r2經過原點的充要條件是:a2+b2=r2
(II)命題p:?x0∈R,x02+2x0+2=0,則命題p的否定¬p為:?x∈R,x2+2x+2≠0.
點評:本題考查了圓經過原點的充要條件、“非”命題,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=4cosxsin(x+
π
6
)-1.
(1)求f(x)的最小正周期;
(2)求f(x)在區(qū)間[-
π
6
π
4
]上的最大值和最小值以及相應的x的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,a、b、c分別是角A、B、C的對邊,sin
A
2
=
5
5
,b2+c2-a2=6.
(Ⅰ)求△ABC的面積;
(Ⅱ)若sinA=sinBsinC,求△ABC的外接圓半徑.

查看答案和解析>>

科目:高中數學 來源: 題型:

頂點在原點,焦點在y軸的拋物線經過點A(1,
1
4
).
(Ⅰ)求拋物線的焦點F的坐標;
(Ⅱ)求拋物線在點A處的切線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,要計算東湖岸邊兩景點B與C的距離,由于地形的限制,需要在岸上選取A和D兩點,現測得AD⊥CD,AD=10km,AB=14km,∠BDA=60°,∠CBD=15°,試求兩景點B與C的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數y=
4-x2
2
的圖象是曲線C.
(Ⅰ)在如圖的坐標系中作出曲線C的示意圖,并標出曲線C與x軸的左、右交點A1,A2;
(Ⅱ)設P是曲線C上位于第一象限的任意一點,過A2作A2R垂直于直線A1P于R,設A2R與曲線C交于Q,求直線PQ斜率的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

e1
、
e2
是不共線的向量,且
a
=
e1
-
e2
,
b
=
e1
+2
e2

(1)證明:
a
b
可以作為一組基底;
(2)以
a
b
為基底,求向量的
c
=
3e
-
e2
的分解式.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于實數x,當且僅當n≤x<n+1時,n∈N*,[x]=n,則不等式4[x]2-36[x]+45<0的解集是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

在等腰△ABC中,AC=BC,延長BC到D,使AD⊥AB,若
AD
AB
AC
,則λ-μ=
 

查看答案和解析>>

同步練習冊答案