1.求函數(shù)f(x)=x3-3x+3在區(qū)間[-2,4]上的最大值與最小值.

分析 求出f′(x),令f′(x)=0,得極值點.求出函數(shù)f(x)=x3-3x+3在區(qū)間[-3,3]上的端點值,然后求出最大值與最小值.

解答 解:∵f(x)=x3-3x+3,
∴f′(x)=3x2-3,
令f′(x)=3x2-3=0,得x1=-1,x2=1.
∵x1=-1,x2=1都在區(qū)間[-2,4]內(nèi),
且f(-2)=(-2)3-3×(-2)+3=1,
f(-1)=(-1)3-3×(-1)+3=5,
f(1)=13-3×1+3=1,
f(4)=43-3×4+3=55.
∴函數(shù)f(x)=x3-3x+3在區(qū)間[-3,3]上的最大值55,最小值 1.

點評 本題考查利用導(dǎo)數(shù)求函數(shù)在閉區(qū)間上的最大值和最小值,解題時要認(rèn)真審題,仔細(xì)解答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若tanα+$\frac{1}{tanα}$=$\frac{10}{3}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),則sin(2α+$\frac{π}{4}$)+2cos$\frac{π}{4}$sin2α=$\frac{4\sqrt{2}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=(2a-1)x在R上是減函數(shù),則a的取值范圍是( 。
A.0<a<$\frac{1}{2}$B.0<a<1C.$\frac{1}{2}$<a<1D.a>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)全集U={不大于20的質(zhì)數(shù)},且A∩(∁B)={3,5},(∁A)∩B={7,19},(∁A)∩(∁B)={2,11},求集合A、B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=lg(1-x)的值域為(-∞,1),則函數(shù)f(x)的定義域為(  )
A.[-9,1)B.(-9,1)C.[0,+∞)D.[-9,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=x|2a-x|+2x,a∈R.
(1)若a=0,判斷函數(shù)y=f(x)的奇偶性,并加以證明;
(2)若函數(shù)f(x)在R上是增函數(shù),求實數(shù)a的取值范圍;
(3)若存在實數(shù)a∈[-2,2],使得關(guān)于x的方程f(x)-tf(2a)=0有三個不相等的實數(shù)根,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,拋物線y=-x2+bx+c交x軸于A、B兩點,交y軸于點C,直線y=x交拋物線y=-x2+bx+c對稱軸右側(cè)的拋物線于點P,連接PA、PC,設(shè)△AOP的面積為S1,△COP的面積為S2
(1)①若A、C兩點坐標(biāo)分別為(3,0),(0,3),求拋物線y=-x2+bx+c的解析式;
②試判斷S1與S2之間的關(guān)系,并說明理由;
(2)將(1)中的拋物線沿x軸正方向平移,在平移過程中,是否存在點P,使S1=2S2,若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求函數(shù)y=cos($\frac{9π}{2}$+x)+sin2x的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x}+1(x≥1)}\\{\frac{x-4}{x-2}(x<1)}\end{array}\right.$,則f-1(x)=$\left\{\begin{array}{l}\frac{2x-4}{x-1},1<x<3\\{log}_{3}(x-1),x≥4\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊答案