11.若tanα+$\frac{1}{tanα}$=$\frac{10}{3}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),則sin(2α+$\frac{π}{4}$)+2cos$\frac{π}{4}$sin2α=$\frac{4\sqrt{2}}{5}$.

分析 由條件利用同角三角函數(shù)的基本關(guān)系求得tanα=3,再利用二倍角公式,兩角和差的正弦公式化簡要求的式子,可得結(jié)果.

解答 解:∵tanα+$\frac{1}{tanα}$=$\frac{10}{3}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),∴tanα=3,
∴sin(2α+$\frac{π}{4}$)+2cos$\frac{π}{4}$sin2α=$\frac{\sqrt{2}}{2}$sin2α+$\frac{\sqrt{2}}{2}$cos2α+2•$\frac{\sqrt{2}}{2}$•$\frac{1-cos2α}{2}$
=$\frac{\sqrt{2}}{2}$sin2α+$\frac{\sqrt{2}}{2}$═$\frac{\sqrt{2}}{2}$•$\frac{2sinαcosα}{{sin}^{2}α{+cos}^{2}α}$+$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{2}$•$\frac{2tanα}{{tan}^{2}α+1}$+$\frac{\sqrt{2}}{2}$ 
=$\frac{\sqrt{2}}{2}$•$\frac{6}{10}$+$\frac{\sqrt{2}}{2}$=$\frac{4\sqrt{2}}{5}$,
故答案為:$\frac{4\sqrt{2}}{5}$.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系,二倍角公式,兩角和差的正弦公式的應(yīng)用,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

1.已知平面向量$\overrightarrow{a}$=(-2,m),$\overrightarrow$=(1,$\sqrt{3}$),且($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow$,則實數(shù)m的值為$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設(shè)二次函數(shù)f(x)=ax2+bx+c的圖象過點(0,1)和(1,4),且對于任意x∈R,不等式f(x)≥4x恒成立.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)g(x)=logb[f(x)+4]的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與直線x+y=1交于P、Q兩點,且OP⊥OQ,其中O為坐標原點.橢圓的離心率e滿足$\frac{\sqrt{3}}{3}$≤e≤$\frac{\sqrt{2}}{2}$,則橢圓長軸的取值范圍是( 。
A.[$\frac{\sqrt{3}}{2}$,1]B.[$\sqrt{3}$,2]C.[$\frac{\sqrt{5}}{2}$,$\frac{\sqrt{6}}{2}$]D.[$\sqrt{5}$,$\sqrt{6}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知等差數(shù)列{an}的前n項和為Sn,a2=3,S5=25,正項數(shù)列{bn}滿足${b_1}{b_2}{b_3}…{b_n}={({\sqrt{3}})^{s_n}}$.
(1)求數(shù)列{an},{bn}的通項公式;
(2)若(-1)nλ<2+$\frac{{{{({-1})}^{n+1}}}}{a_n}$對一切正整數(shù)n均成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知命題p:?x∈[0,3],a≥2x-2,命題q:?x∈R,x2+4x+a=0,若命題“p∧q”是真命題,則實數(shù)a的值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若函數(shù)f(x)=eax+2x(x∈R)有大于零的極值點,則實數(shù)a的取值范圍是(  )
A.a>-2B.a<-2C.a$>-\frac{1}{2}$D.a$<-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設(shè)變量x,y滿足約束條件$\left\{{\begin{array}{l}{3x+y-6≥0}\\{x-y-2≤0}\\{y-3≤0}\end{array}}\right.$,求目標函數(shù)Z=y-2x的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.求函數(shù)f(x)=x3-3x+3在區(qū)間[-2,4]上的最大值與最小值.

查看答案和解析>>

同步練習冊答案