在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C1和直線C2的極坐標(biāo)方程分別為ρ=4cosθ,ρ=
4b
bcosθ+4sinθ
(b∈R).
(1)求圓C1和直線C2的直角坐標(biāo)方程,并求直線C2被圓C1所截的弦長(zhǎng);
(2)過(guò)原點(diǎn)O作直線C2的垂線,垂足為點(diǎn)A,求線段OA的中點(diǎn)M的軌跡的參數(shù)方程.
考點(diǎn):簡(jiǎn)單曲線的極坐標(biāo)方程,參數(shù)方程化成普通方程
專題:坐標(biāo)系和參數(shù)方程
分析:(1)把圓C1 和直線C2的極坐標(biāo)方程化為直角坐標(biāo)方程,求得弦心距為d,再利用弦長(zhǎng)公式求得弦長(zhǎng).
(2)設(shè)線段OA的中點(diǎn)M(x,y),曲線C2于x軸的交點(diǎn)D,由
OA
DA
OA
DA
=0求得點(diǎn)M的軌跡方程,再把它化為參數(shù)方程.
解答: 解:(1)圓C1 的極坐標(biāo)方程ρ=4cosθ,化為直角坐標(biāo)方程為 (x-2)2+y2=4,
表示以(2,0)為圓心,半徑等于2的圓.
直線C2的極坐標(biāo)方程 ρ=
4b
bcosθ+4sinθ
(b∈R)化為直角坐標(biāo)方程為 bx+4y-4b=0,
求得弦心距為 d=
|2b+0-4b|
b2+16
=
2|b|
b2+16
,故弦長(zhǎng)為2
r2-d2
=
16
b2+16

(2)設(shè)線段OA的中點(diǎn)M(x,y),
則點(diǎn)A(2x,2y),設(shè)曲線C2于x軸的交點(diǎn)D,則點(diǎn)D(4,0).
OA
=(2x,2y),
DA
=(2x-4,2y),
OA
DA
,∴
OA
DA
=4x(x-2)+4y2=0.
化簡(jiǎn)可得 (x-1)2+y2=1,即點(diǎn)M的軌跡的參數(shù)方程為
x=1+cosα
y=sinα
 (α為參數(shù),0≤α<2π).
點(diǎn)評(píng):本題主要考查把極坐標(biāo)方程化為直角坐標(biāo)方程、把直角坐標(biāo)方程化為參數(shù)方程的方法,求動(dòng)點(diǎn)的軌跡方程,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0,b>0,若
2
是2ab的等比中項(xiàng),則
1
a
+
1
b
的最小值為( 。
A、2B、4C、8D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若α為銳角,且sin(α-
π
6
)=
1
3
,則sinα的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足(2a+c)cosB+bcosC=0.
(1)求角B的值;
(2)設(shè)
m
=(sinA,cosA),
n
=(1,
3
),當(dāng)
m
n
取到最大值時(shí),求角A、角C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩條直線l1:x+(1+m)y=2-m,l2:2mx+4y=-16,m為何值時(shí),l1與l2:(1)平行  (2)垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了研究玉米品種對(duì)產(chǎn)量的影響,某農(nóng)科院對(duì)一塊試驗(yàn)田種植的一批玉米共10000株的生長(zhǎng)情況進(jìn)行研究,現(xiàn)采用分層抽樣方法抽取50株為樣本,統(tǒng)計(jì)結(jié)果如表:
高莖矮莖合計(jì)
圓粒111930
皺粒13720
合計(jì)242650
(1)現(xiàn)采用分層抽樣方法,從這個(gè)樣本中取出10株玉米,再?gòu)倪@10株玉米中隨機(jī)選出3株,求選到的3株之中既有圓粒玉米又有皺粒玉米的概率;
(2)根據(jù)對(duì)玉米生長(zhǎng)情況作出的統(tǒng)計(jì),是否能在犯錯(cuò)誤的概率不超過(guò)0.050的前提下認(rèn)為玉米的圓粒與玉米的高莖有關(guān)?(下面的臨界值表和公式可供參考):
P(K2≥k)0.150.100.0500.0250.0100.001
k2.0722.7063.8415.0246.63510.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d為樣本容量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

哈三中高二某班為了對(duì)即將上市的班刊進(jìn)行合理定價(jià),將對(duì)班刊按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):
單價(jià)x(元)88.28.48.68.89
銷量y(元)908483807568
(Ⅰ)求回歸直線方程
y
=bx+a;(其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
,a=
.
y
-b
.
x

(Ⅱ)預(yù)計(jì)今后的銷售中,銷量與單價(jià)服從(Ⅰ)中的關(guān)系,且班刊的成本是4元/件,為了獲得最大利潤(rùn),班刊的單價(jià)定為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,異面直線A1B與AC所成的角是
 
°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足
x+2y-1≥0
x-2y+1≥0
x≤3

(Ⅰ)求x+y的最大值與最小值;
(Ⅱ)求
y
x+2
的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案