某調(diào)查公司在某服務(wù)區(qū)調(diào)查七座以下小型汽車在某段高速公路的車速(km/t),辦法是按汽車進(jìn)服務(wù)區(qū)的先后每間隔50輛抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問(wèn),將調(diào)查結(jié)果按[60,65)[65,70)[70,75)[75,80),[80,85)[85,90)分成六段,并得到如圖所示的頻率分布直方圖.
(1)試估計(jì)這40輛小型車輛車速的眾數(shù)和中位數(shù).
(2)若從車速在[60,70)的車輛中任抽取2輛,求抽出的2輛車中至少有一輛的車速在[65,70)的概率.
考點(diǎn):古典概型及其概率計(jì)算公式,頻率分布直方圖,眾數(shù)、中位數(shù)、平均數(shù)
專題:概率與統(tǒng)計(jì)
分析:(Ⅰ)利用頻率分布直方圖能求出這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計(jì)值.
(Ⅱ)從頻率分布直方圖中知,車速在[60,65)的車輛數(shù)有2輛,車速在[65,70)的車輛數(shù)有4輛,由此能求出從車速在[60,70)的車輛中任抽取2輛,抽出的2輛車中至少有一輛的車速在[65,70)的概率.
解答: 解:(Ⅰ)眾數(shù)的估計(jì)值為最高矩形的中點(diǎn),
∴眾數(shù)的估計(jì)值為:
75+80
2
=77.5.
設(shè)圖中虛所對(duì)應(yīng)的車速為中位數(shù)的估計(jì)值x,
則0.01×5+0.02×50.004×5+0.06×(x-75)=0.5,
解得x=77.5,
∴中位數(shù)的估計(jì)值為77.5.
(Ⅱ)從頻率分布直方圖中知,車速在[60,65)的車輛數(shù)為0.01×5×40=2輛,
車速在[65,70)的車輛數(shù)為0.02×5×40=4輛,
∴從車速在[60,70)的車輛中任抽取2輛,
抽出的2輛車中至少有一輛的車速在[65,70)的概率:
p=1-
C
2
2
C
2
6
=
14
15
點(diǎn)評(píng):本題考查眾數(shù)、中位數(shù)的計(jì)算,考查概率的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意頻率分布直方圖的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

高二某班50名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)慷冀橛?3秒到18秒之間,將測(cè)試結(jié)果按如下方式分成五組,第一組[13,14),第二組[14,15)…第五組[17,18],如圖是按上述分組方法得到的頻率分布直方圖.
(1)若成績(jī)大于等于14秒且小于16秒規(guī)定為良好,求該班在這次百米測(cè)試中成績(jī)?yōu)榱己玫娜藬?shù).
(2)請(qǐng)根據(jù)頻率分布直方圖,估計(jì)樣本數(shù)據(jù)的眾數(shù)和中位數(shù)(精確到0.01).
(3)設(shè)m,n表示該班兩個(gè)學(xué)生的百米測(cè)試成績(jī),已知m,n∈[13,14)∪[17,18],求事件“|m-n|>2”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

假定下述數(shù)據(jù)是甲、乙兩個(gè)供貨商的交貨天數(shù):
甲:10 9 10 10 11 11 9 11 10 10
乙:8 10 14 7 10 11 10 8 15 12
估計(jì)兩個(gè)供貨商的交貨情況,并問(wèn)哪個(gè)供貨商交貨時(shí)間短一些,哪個(gè)供貨商交貨時(shí)間較具一致性與可靠性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心為原點(diǎn)O,長(zhǎng)軸在x軸上,短半軸長(zhǎng)為
6
2
,離心率e=
10
5
,左、右焦點(diǎn)分別為F1、F2
(Ⅰ)求該橢圓的方程;
(Ⅱ)過(guò)F1作直線l交橢圓于P、Q兩點(diǎn)(直線l不過(guò)原點(diǎn)O),若
QF2
PF2
=
11
8
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=4cos2x-4
3
sinxcosx-2(x∈R).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)△ABC的內(nèi)角A,B,C對(duì)應(yīng)邊分別為a、b、c,且c=3,f(C)=-4,若向量
m
=(1,sinA)與向量
.
n
=(1,2sinB)共線,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正四面體ABCD邊長(zhǎng)為2.E,F(xiàn)分別為AC,BD中點(diǎn).
(Ⅰ)求證:AC⊥平面EFD;
(Ⅱ)求
VE-FCD
VA-BCD
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2
1+x2

(Ⅰ)分別求f(2)+f(
1
2
),f(3)+f(
1
3
),f(4)+f(
1
4
) 的值;
(Ⅱ)歸納猜想一般性結(jié)論,并給出證明;
(Ⅲ)求值:2f(2)+2f(3)+…+2f(2014)+f(
1
2
)+f(
1
3
)+…+f(
1
2014
)+
1
22
f(2)+
1
32
f(3)+…+
1
20142
f(2014).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定點(diǎn)G(-3,0),S是圓C:(X-3)2+y2=72(C為圓心)上的動(dòng)點(diǎn),SG的垂直平分線與SC交于點(diǎn)E.設(shè)點(diǎn)E的軌跡為M.
(1)求M的方程;
(2)是否存在斜率為1的直線,使得直線與曲線M相交于A,B兩點(diǎn),且以AB為直徑的圓恰好經(jīng)過(guò)原點(diǎn)?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定價(jià)格進(jìn)行試銷,得到數(shù)據(jù)如下表:
單價(jià)x(元) 8 8.2 8.4 8.6 8.8 9
銷量y(件) 90 84 83 80 75 68
根據(jù)上表可得回歸方程y=bx+a中的b=-20,據(jù)此模型預(yù)報(bào)單價(jià)為10元時(shí)的銷量為
 
件.

查看答案和解析>>

同步練習(xí)冊(cè)答案