【題目】如圖,已知拋物線經(jīng)過點,過點的直線與拋物線有兩個不同的交點、.
(1)求直線的斜率的取值范圍;
(2)設為原點,直線交軸于,直線交軸于,,,求證:為定值.
【答案】(1);(2)為定值2,理由見解析.
【解析】
(1)將點P代入拋物線方程,即可求得p的值,設直線AB的方程,代入拋物線方程,由△>0,排除特殊情況,即可求得k的取值范圍;
(2)根據(jù)向量的共線定理即可求得λ=1﹣yM,μ=1﹣yN,求得直線PA的方程,令x=0,求得M點坐標,同理求得N點坐標,根據(jù)韋達定理和向量的坐標表示,即可求得λ+μ為定值.
(1)拋物線C:y2=2px經(jīng)過點P(1,2),∴4=2p,解得p=2,
根據(jù)題意得過點(0,1)的直線斜率存在,設方程為y=kx+1,A(x1,y1),B(x2,y2);
聯(lián)立方程,,可得k2x2+(2k﹣4)x+1=0,
∴△=(2k﹣4)2﹣4k2>0,且k≠0解得k<1,
故直線l的斜率的取值范圍(﹣∞,0)∪(0,1);
(2)設點M(0,yM),N(0,yN),則 (0,1﹣yM),(0,1);
因為λ,所以1=λ(1﹣yM),故λ,同理μ,
直線PA的方程為y﹣2(x﹣1)(x﹣1)(x﹣1),
令x=0,得yM,同理可得yN,
因為λ+μ
2,
即有λ+μ為定值2.
科目:高中數(shù)學 來源: 題型:
【題目】設表示不大于實數(shù)的最大整數(shù),函數(shù),若關于的方程有且只有5個解,則實數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設A是同時符合以下性質的函數(shù)f(x)組成的集合:
①x∈[0,+∞),都有f(x)∈(1,4];②f(x)在[0,+∞)上是減函數(shù).
(1)判斷函數(shù)f1(x)=2-和f2(x)=1+3· (x≥0)是否屬于集合A,并簡要說明理由;
(2)把(1)中你認為是集合A中的一個函數(shù)記為g(x),若不等式g(x)+g(x+2)≤k對任意的x≥0總成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中:
①若,滿足,則的最大值為;
②若,則函數(shù)的最小值為
③若,滿足,則的最小值為
④函數(shù)的最小值為
正確的有__________.(把你認為正確的序號全部寫上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班主任對全班50名學生進行了作業(yè)量多少的調查,喜歡玩電腦游戲的同學認為作業(yè)多的有18人,認為作業(yè)不多的有9人,不喜歡玩電腦游戲的同學認為作業(yè)多的有8人,認為作業(yè)不多的有15人,則認為喜歡玩電腦游戲與認為作業(yè)量的多少有關系的把握大約是多少?
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為考查某種疫苗預防疾病的效果,進行動物實驗,得到統(tǒng)計數(shù)據(jù)如下:
未發(fā)病 | 發(fā)病 | 總計 | |
未注射疫苗 | 20 | ||
注射疫苗 | 30 | ||
總計 | 50 | 50 | 100 |
現(xiàn)從所有試驗動物中任取一只,取到“注射疫苗”動物的概率為.
(1)求列聯(lián)表中的數(shù)據(jù),,,的值;
(2)判斷疫苗是否有效?
(3)能夠有多大把握認為疫苗有效?
(參考公式,)
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com