【題目】在直角坐標(biāo)系xOy中,以M(﹣1,0)為圓心的圓與直線 相切.
(1)求圓M的方程;
(2)過(guò)點(diǎn)(0,3)的直線l被圓M截得的弦長(zhǎng)為 ,求直線l的方程.
(3)已知A(﹣2,0),B(2,0),圓M內(nèi)的動(dòng)點(diǎn)P滿足|PA||PB|=|PO|2 , 求 的取值范圍.
【答案】
(1)解:依題意,圓M的半徑r等于圓心M(﹣1,0)到直線 的距離,
即 ,∴圓M的方程為(x+1)2+y2=4
(2)解:當(dāng)斜率存在時(shí),設(shè)直線方程l:y=kx+3,則圓心到直線的距離 ,
∴ ,直線方程l:4x﹣3y+9=0
當(dāng)直線斜率不存在時(shí),則l:x=0,經(jīng)檢驗(yàn)滿足條件
綜上,直線方程l:4x﹣3y+9=0或x=0
(3)解:設(shè)P(x,y),由|PA||PB|=|PO|2,
得 ,即x2﹣y2=2.
∴ .
∵點(diǎn)P在圓M內(nèi),∴(x+1)2+y2<4,∴0≤y2<4,∴﹣1≤y2﹣1<3.
∴ 的取值范圍為[﹣2,6)
【解析】(1)由直線與圓相切,得到圓心到切線的距離d等于半徑r,利用點(diǎn)到直線的距離公式求出圓心M到已知直線的距離d,即為圓M的半徑,寫出圓M方程即可;(2)分類討論,利用圓心到直線的距離等于半徑,即可求直線l的方程;(3)設(shè)P(x,y),利用兩點(diǎn)間的距離公式化簡(jiǎn)已知的等式,整理后得到x與y的關(guān)系式,再表示出兩向量的坐標(biāo),利用平面向量的數(shù)量積運(yùn)算法則計(jì)算所求的式子,將表示出的關(guān)系式代入得到關(guān)于y的式子,由P在圓M內(nèi)部,得到P與圓心M的距離小于半徑列出不等式,即可求出所求式子的范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題12分)已知函數(shù) .
(1)若=0,判斷函數(shù)的單調(diào)性;
(2)若時(shí),<0恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù),
(1)當(dāng)時(shí),求不等式的解集;
(2)若不等式的解集為空集,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 有一個(gè)零點(diǎn)為4,且滿足.
(1)求實(shí)數(shù)和的值;
(2)試問(wèn):是否存在這樣的定值,使得當(dāng)變化時(shí),曲線在點(diǎn)處的切線互相平行?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由;
(3)討論函數(shù)在上的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面四邊形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,將△ABD沿BD折起,使得平面ABD⊥平面BCD,如圖.
(1)求證:AB⊥CD;
(2)若M為AD中點(diǎn),求直線AD與平面MBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定橢圓C: =1(a>b>0).設(shè)t>0,過(guò)點(diǎn)T(0,t)斜率為k的 直線l與橢圓C交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn).
(Ⅰ)用a,b,k,t表示△OMN的面積S,并說(shuō)明k,t應(yīng)滿足的條件;
(Ⅱ)當(dāng)k變化時(shí),求S的最大值g(t).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)y=sin(x+ )圖象上的所有點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的 倍,所得函數(shù)為f(x),則函數(shù)f(x)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知梯形ABCD,AB∥CD,且AB=AD=2,CD=3.
(1)用向量 、 表示向量 ;
(2)若AD⊥AB,求向量 、 夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
如圖,已知四棱錐,底面為菱形,,
, 平面, 分別是的中點(diǎn)。
(1)證明: ;
(2)若為上的動(dòng)點(diǎn),與平面所成最大角
的正切值為,求二面角的余弦值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com