已知三條直線a,b,c和平面β,則下列推論中正確的是(  )
A、若a∥b,b?β,則a∥β
B、若a∥β,b∥β,則a∥b或a與b相交
C、若a⊥c,b⊥c,則a∥b
D、若a?β,b∥β,a,b共面,則a∥b
考點:空間中直線與平面之間的位置關(guān)系
專題:探究型,空間位置關(guān)系與距離
分析:觀察題設(shè)條件以及四個選項,A選項研究線面平行的問題用線面平行的條件進行判斷,B,C,D三個選項研究線線平行的問題,用線線平行的條件進行判斷,
解答: 解:A選項不正確,由于不能保證a不在面內(nèi),故無法判斷線面平行;
B選項,a∥β,b∥β,則a∥b或a與b相交或異面;
C選項不正確,垂直于同一條直線的兩個直線的位置關(guān)系可能是平行,相交,異面,故不正確;
D選項正確,此是線面平行的性質(zhì)定理的內(nèi)容,故正確.
故選:D.
點評:本題考查空間中直線與平面之間的位置關(guān)系,求解此類題關(guān)鍵是熟練掌握了空間中線面之間位置關(guān)系的特征及有較好的空間想像能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,已知點P是三角形ABC所在平面外一點,且PA=BC=1,截面EFGH分別平行于PA,BC(點E,F(xiàn),G,H分在棱AB,AC,PC,PB上)
(1)求證:四邊形EFGH是平行四邊形且周長為定值;
(2)設(shè)PA與BC所成角為θ,求四邊形EFGH的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一支田徑隊有男運動員28人,女運動員21人,現(xiàn)按性別用分層抽樣的方法,從中抽取14位運動員進行健康檢查,則男運動員應抽取
 
人.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三棱錐C-ABD中(如圖),△ABD與△CBD是全等的等腰直角三角形,O為斜邊BD的中點,AB=4,二面角A-BD-C的大小為60°,并給出下面結(jié)論:
①AC⊥BD;
②AD⊥CO;
③△AOC為正三角形;
④cos∠ADC=
3
4
;
⑤四面體ABCD的外接球面積為32π.
其中真命題是( 。
A、②③④B、①③④
C、①④⑤D、①③⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式x(x-3)<0的解集是( 。
A、{x|x<0}
B、{x|x<3}
C、{x|0<x<3}
D、{x|x<0或x>3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=
x+a
x2+1
(a∈R)是奇函數(shù),則a的值為(  )
A、1B、0C、-1D、±1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

研究發(fā)現(xiàn),某公司年初三個月的月產(chǎn)值y(萬元)與月份n近似地滿足函數(shù)關(guān)系式y(tǒng)=an2+bn+c(如n=1表示1月份).已知1月份的產(chǎn)值為4萬元,2月份的產(chǎn)值為11萬元,3月份的產(chǎn)值為22萬元.由此可預測4月份的產(chǎn)值為( 。
A、35萬元B、37萬元
C、56萬元D、79萬元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xoy中,已知曲線C1上的任一點到點(1,0)的距離與到直線x=2的距離之比為
2
2
,動點Q是動圓C2:x2+y2=r2(1<r<
2
)上一點.
(1)求曲線C1的軌跡方程;
(2)若點P為曲線C1上的點,直線PQ與曲線C1和動圓C2均只有一個公共點,求P、Q兩點的距離|PQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=lg
1+2xa
2
(a∈R) 
(1)已知函數(shù)F(x)=2f(x)-f(2x)有兩個不同的零點,求a的取值范圍;
(2)若函數(shù)f(x)在定義域x∈(-∞,1]上有意義,求a的取值范圍.

查看答案和解析>>

同步練習冊答案