9.已知函數(shù)y=log${\;}_{\frac{1}{2}}$(x2-ax+a)在(3,+∞)上是減函數(shù),則a的取值范圍是(-∞,$\frac{9}{2}$].

分析 函數(shù)為復(fù)合函數(shù),且外函數(shù)為減函數(shù),只要內(nèi)函數(shù)一元二次函數(shù)在(3,+∞)上是增函數(shù)且在(3,+∞)上恒大于0即可,由此得到關(guān)于a的不等式求解.

解答 解:令t=x2-ax+a,
則原函數(shù)化為$g(t)=lo{g}_{\frac{1}{2}}t$,此函數(shù)為定義域內(nèi)的減函數(shù).
要使函數(shù)y=log${\;}_{\frac{1}{2}}$(x2-ax+a)在(3,+∞)上是減函數(shù),
則內(nèi)函數(shù)t=x2-ax+a在(3,+∞)上是增函數(shù),
∴$\left\{\begin{array}{l}{\frac{a}{2}≤3}\\{{3}^{2}-3a+a≥0}\end{array}\right.$,解得:a$≤\frac{9}{2}$.
∴a的取值范圍是(-∞,$\frac{9}{2}$].
故答案為:(-∞,$\frac{9}{2}$].

點評 本題考查復(fù)合函數(shù)的單調(diào)性,復(fù)合的兩個函數(shù)同增則增,同減則減,一增一減則減,注意對數(shù)函數(shù)的定義域是求解的前提,考查學生發(fā)現(xiàn)問題解決問題的能力,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

15.函數(shù)f(x)=(x2-2x-3)(x2-2x-5)的值域是[-1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.如果命題“若x⊥y,y∥z,則x⊥z”不成立,那么字母x、y、z在空間所表示的幾何圖形一定是x是①,y是①,z是②.①直線;②平面(用①②填空)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.如圖為長方體積木塊堆成的幾何體的三視圖,此幾何體共由4塊木塊堆成.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若函數(shù)y=(a2-3a+3)ax是指數(shù)函數(shù),則函數(shù)y=bx+2-a必過定點(  )
A.(0,1)B.(-2,-1)C.(0,-2)D.(-2,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設(shè)函數(shù)f(x)=ln(1+|x|)-$\frac{1}{1+{x}^{2}}$,則使得f(x)>f(3x-1)成立的x的取值范圍是($\frac{1}{4}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)f(x)=2x-3,其中x∈{x∈N|1≤x≤$\frac{10}{3}$},則函數(shù)的最大值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知α∈($\frac{π}{6}$,π),$\overrightarrow{a}$=(sin(2α+β),sinβ),$\overrightarrow$=(3,1),且$\overrightarrow{a}$∥$\overrightarrow$,設(shè)tanα=x,tanβ=y,記y=f(x),當f(x)=$\frac{1}{3}$時,α=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=xekx(k≠0)
(1)函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(-1,1)內(nèi)單調(diào)遞增,求k的取值范圍.

查看答案和解析>>

同步練習冊答案