分析 (1)利用奇函數(shù)定義f(x)=-f(x)中的特殊值求a的值;根據(jù)解析式指出函數(shù)f(x)的單調(diào)性
(2)根據(jù)函數(shù)f(x)的單調(diào)性,奇函數(shù)的性質(zhì)把不等式f(t2-2t)+f(2t2-k)<0轉(zhuǎn)化為關(guān)于t的一元二次不等式,最后由一元二次不等式知識(shí)求出k的取值范圍.
解答 解:(1)因?yàn)閒(x)是奇函數(shù),函數(shù)的定義域?yàn)镽,所以f(0)=0,
即a+$\frac{1}{2}$=0,
所以a=-$\frac{1}{2}$;
f(x)=-$\frac{1}{2}$+$\frac{1}{{{4^x}+1}}$在R上是單調(diào)減函數(shù)
(2)因?yàn)閒(x)是奇函數(shù),在(-∞,+∞)上為減函數(shù).
所以f(t2-2t)+f(2t2-k)<0等價(jià)于f(t2-2t)<-f(2t2-k)=f(k-2t2),
因?yàn)閒(x)為減函數(shù),由上式可得:t2-2t>k-2t2.
即對(duì)一切t∈R有:3t2-2t-k>0,
從而判別式△=4+12k<0⇒k<-$\frac{1}{3}$.
所以k的取值范圍是k<-$\frac{1}{3}$.
點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性與單調(diào)性的綜合應(yīng)用;同時(shí)考查一元二次不等式恒成立問題的解決策略.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=2x3 | B. | y=x+$\frac{1}{x}$ | C. | y=lg|x| | D. | y=e|x| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (5,-1)或(-1,5) | B. | (1,5)或(5,1) | C. | (-1,-20)或(-20,-1) | D. | (-1,-20) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com