已知全集U=R,集合A={x|0<3-x≤4},集合B={x|x2-x-6≤0}
(Ⅰ)求集合A,B
(Ⅱ)求(∁UA)∩B.
考點:交、并、補集的混合運算
專題:集合
分析:(Ⅰ)求出A與B中不等式的解集確定出A與B即可;
(Ⅱ)由全集U=R,求出A的補集,找出A補集與B的交集即可.
解答: 解:(Ⅰ)由A中不等式解得:-1≤x<3,即A=[-1,3);
由B中不等式變形得:(x-3)(x+2)≤0,
解得:-2≤x≤3,即B=[-2,3];
(Ⅱ)∵全集U=R,A=[-1,3),
∴∁UA=(-∞,-1)∪[3,+∞),
則(∁UA)∩B=[-2,-1).
點評:此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知f(x),g(x)都是定義在R上的函數(shù),并滿足以下條件:
(1)f(x)=3axg(x),(a>0,a≠1);
(2)g(x)≠0;
(3)f(x)g′(x)<f′(x)g(x).
f(-1)
g(-1)
+
f(1)
g(1)
=10,則a=( 。
A、
1
3
B、3
C、
10
3
D、
1
3
或3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=(x-1)2,g(x)=4(x-1).數(shù)列{an}滿足a1=2,(an+1-an)g(an)+f(an)=0.
(1)用an表示an+1;
(2)求證:{an-1}是等比數(shù)列
(3)(文科),若數(shù)列{an}的前n項和為Sn,試求n的最小值,使得Sn>n+3恒成立.
(理科)若bn=3f(an)-g(an+1),求數(shù)列{bn}的最大項和最小項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

市某棚戶區(qū)改造建筑用地平面示意圖如圖所示.經(jīng)規(guī)劃調(diào)研確定,棚改規(guī)劃建筑用地區(qū)域是半徑為R的圓面.該圓面的內(nèi)接四邊形ABCD是原棚戶建筑用地,測量可知邊界AB=AD=4萬米,BC=6萬米,CD=2萬米.
(Ⅰ)求原棚戶區(qū)建筑用地ABCD中對角A,C兩點的距離;
(Ⅱ)請計算出原棚戶區(qū)建筑用地ABCD的面積及圓的半徑R;
(Ⅲ)因地理條件的限制,邊界AD,DC不能變更,而邊界AB,BC可以調(diào)整,為了提高棚戶區(qū)改造建筑用地的利用率,請在圓弧ABC上設(shè)計一點P,使得棚戶區(qū)改造的新建筑用地APCD的面積最大,并求最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是一個等差數(shù)列,且a2=1,a6=-5.
(1)求{an}的通項an和前n項和Sn
(2)設(shè)cn=
5-an
2
,bn=2 cn,證明數(shù)列{bn}是等比數(shù)列.
(3)設(shè)cn=5-an,bn=
1
cn2-1
(n∈N*),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩個定點A1(-2,0),A2(2,0),動點M滿足直線MA1與MA2的斜率之積是定值
m
4
(m∈R,m≠0).
(1)求動點M的軌跡方程,并指出隨m變化時方程所表示的曲線的形狀;
(2)若m=-3,已知點A(1,t)(t>0)是軌跡M上的定點,E,F(xiàn)是動點M的軌跡上的兩個動點且E,F(xiàn),A不共線,如果直線AE的斜率kAE與直線AF的斜率kAF滿足kAE+kAF=0,試探究直線EF的斜率是否是定值?若是定值,求出這個定值,若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-kx+1.求:
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≤0恒成立,試確定實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C通過不同三點M(m,0),N(2,0),R(0,1),且直線CM斜率為-1,
(Ⅰ)試求圓C的方程;
(Ⅱ)若Q是x軸上的動點,QA,QB分別切圓C于A,B兩點,
(1)求證:直線AB恒過一定點;
(2)求
QA
QB
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=312,且3an+1=an(n∈N*,n≥1)
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)記數(shù)列bn=|log3an|,且數(shù)列{bn}的前n項和為Tn,求T30;
(Ⅲ)在(Ⅱ)的前提下,問從第幾項開始數(shù)列{bn}中的連續(xù)20項之和等于102?

查看答案和解析>>

同步練習冊答案