已知函數(shù)f(x)=2x+λ2-x(λ∈R).
(1)當λ=-1時,求函數(shù)f(x)的零點;
(2)若函數(shù)f(x)為偶函數(shù),求實數(shù)λ的值;
(3)若不等式
1
2
≤f(x)≤4在x∈[0,1]上恒成立,求實數(shù)λ的取值范圍.
考點:函數(shù)零點的判定定理,函數(shù)奇偶性的性質,函數(shù)恒成立問題
專題:計算題
分析:(1)根據(jù)函數(shù)零點的定義,直接解方程即可,
(2)根據(jù)偶函數(shù)的定義判斷即可,
(3)不等式轉化為參數(shù)λ的不等式,-22x+2x-1≤λ≤-22x+2x+2,求在區(qū)間的最值問題,問題得以解決.
解答: 解:(1)∵f(x)=2x+λ2-x,當λ=-1時,∴2x-2-x=0,解得,x=0;
(2)∵函數(shù)f(x)為偶函數(shù),∴f(-x)=f(x),∴λ2x+2-x=2x+λ2-x,解得λ=1
(3)∵
1
2
≤f(x)≤4
1
2
≤2x+λ2-x≤4
∴-22x+2x-1≤λ≤-22x+2x+2,
設2x=t,t∈[1,2],
∴-t2+
1
2
t≤λ≤-t2+4t,
分別令g(t)=-t2+
1
2
t,h(t)=-t2+4t,
∴g(t)max=g(1)=-
1
2
,h(t)min=h(1)=3
-
1
2
≤λ≤3
點評:本題考查函數(shù)零點的求法,偶函數(shù)的判斷,指數(shù)型復合函數(shù)的性質以及應用,函數(shù)的恒成立問題,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對于正數(shù)x,y,定義運算Φ(x,y)=x-
1
y
,則Φ(2,Φ(2,2))的值為( 。
A、
2
3
B、1
C、
4
3
D、
5
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)(x∈R)滿足f(2)=3,且f′(x)<1,則不等式f(x2)<x2+1的解集是(  )
A、(-∞,-
2
B、(
2
,+∞)
C、(-
2
2
D、(-∞,-
2
)∪(
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,A,B,C的對邊分別為a,b,c,且
AB
2=
AB
AC
+
BA
BC
+
CA
CB

(1)判斷△ABC的形狀,并求sinA+sinB的取值范圍.
(2)如圖,三角形ABC的頂點A、C分別在l1、l2上運動,AC=2,BC=1,若直線l1⊥直線l2 ,且相交于點O,求O,B間距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一艘船從A點出發(fā)以2
3
km/h的速度向垂直于對岸的方向行駛,同時河水的流速為2km/h,求船實際航行速度的大小與方向(用與流速間的夾角表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanα=-2,求4sin2α+3cos2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a-b≠0時,有
f(a)-f(b)
a-b
>0成立.
(1)判斷f(x)在[-1,1]上的單調性,并證明;
(2)解不等式:f(x+
1
2
)<f(
1
x-1
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,點A(0,3),直線l經過兩點(1,-2),(3,2),設圓C的半徑為1,圓心在直線l上.
(Ⅰ)求直線l的方程;
(Ⅱ)若圓C被x軸截得的弦長為
3
,求圓C的方程;
(Ⅲ)若圓C上存在點M,使MA=2MO,求圓心C的橫坐標a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校舉行中學生“日常生活小常識”知識比賽,比賽分為初賽和復賽兩部分,初賽采用選手從備選題中選一題答一題的方式進行;每位選手最多有5次答題機會,選手累計答對3題或答錯3題即終止比賽,答對3題者直接進入復賽,答錯3題者則被淘汰.已知選手甲答對每個題的概率均為
2
3
,且相互間沒有影響.
(Ⅰ)求選手甲進入復賽的概率;
(Ⅱ)設選手甲在初賽中答題的個數(shù)為X,試求X的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案