已知角α終邊上一點P的坐標為(-3,4),求sinα和cos(α+
π
3
).
考點:兩角和與差的余弦函數(shù),任意角的三角函數(shù)的定義
專題:三角函數(shù)的求值
分析:首先,借助于三角函數(shù)的定義,得到sinα=
4
5
,cosα=-
3
5
,然后,借助于兩角和的余弦公式進行求解.
解答: 解:根據(jù)三角函數(shù)的定義,得
sinα=
4
5
,cosα=-
3
5
,
∴cos(α+
π
3
)=cosαcos
π
3
-sinαsin
π
3

=(-
3
5
)×
1
2
-
4
5
×
3
2

=-
3+4
3
10

∴sinα=
4
5
,cos(α+
π
3
)=-
3+4
3
10
點評:本題重點考查了三角函數(shù)的定義,兩角和與差的余弦公式等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

1
a
1
b
<0,則下列不等式:①|(zhì)a|>|b|;②a+b>ab;③
a
b
+
b
a
>2;④
a2
b
<2a-b中,正確的不等式是( 。
A、①②B、③④C、①③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列不等式的解集:
(1)4x2-20x<25;           
(2)
x+6-x2
x
≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln
x+1
2
+
1-x
a(x+1)
(a>0)•
(Ⅰ)若函數(shù)f(x)在區(qū)間(2,4)上存在極值,求實數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)在[1,﹢∞)上為增函數(shù),求實數(shù)a的取值范圍;
(Ⅲ)求證:當n∈N*且n≥2時,
1
2
+
1
3
+
1
4
+…+
1
n
<lnn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解下列不等式:
(1)|3-2x|<9;
(2)|3-x|-|x+1|<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(2,0),B(0,2),C(cosθ,sinθ),O為坐標原點.
(1)
AC
BC
=-
1
3
,求sinθcosθ的值;
(2)若|
OA
+
OC
|=
7
,θ∈(0,
π
2
)求
OB
OC
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2x+1
x
(x>0),數(shù)列{an}滿足a1=1,an=f(
1
an-1
)(x∈N*,且n≥2).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)Tn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1,若Tn≥tn2對n∈N*恒成立,求實數(shù)t的取值范圍;
(3)是否存在以a1為首項,公比為q(0<q<5,q∈N*)的等比數(shù)列{a nk},k∈N*,使得數(shù)列{a nk}中每一項都是數(shù)列{an}中不同的項,若存在,求出所有滿足條件的數(shù)列{nk}的通項公式;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2(0<x<1)的圖象如圖所示,其在點M(t,f(t))處的切線為l,l與x軸和直線x=1分別交于點P、Q,點N(1,0),設(shè)△PQN的面積為S=g(t).
(Ⅰ)求g(t)的表達式;
(Ⅱ)若△PQN的面積為b時的點M恰好有兩個,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,D、E分別為CC1、AD的中點,F(xiàn)為BB1上的點,且B1F=3BF
(I)證明:EF∥平面ABC;
(Ⅱ)若AC=2
2
,CC1=2,BC=
2
,∠ACB=
π
3
,求三棱錐F-ABD的體積.

查看答案和解析>>

同步練習(xí)冊答案