已知二項(xiàng)式(
3x
-
1
x
n的展開式中的第三項(xiàng)為常數(shù)項(xiàng),則n=
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:在展開式的通項(xiàng)公式中,令x的指數(shù)為0,即可求得n的值.
解答: 解:依題意有 T3=
C
2
n
x
n-2
3
•(-1)2•x-2=(-1)2
2
n
x
n-8
3
 
在上式中,令
n-8
3
=0,得n=8,
故答案為:8.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知方程
|sinx|
x
=k在(0,+∞)上有兩個(gè)不同的解α,β(α<β),則下面結(jié)論正確的是( 。
A、sinα=αcosβ
B、sinα=-αcosβ
C、cosα=βsinβ
D、sinβ=-βsinα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
1
2
,左準(zhǔn)線方程為x=-4.
(1)求橢圓M的標(biāo)準(zhǔn)方程;
(2)已知過橢圓
x2
a2
+
y2
b2
=1
上一點(diǎn)(x0,y0)作橢圓的切線,切線方程為
x0x
a2
+
y0y
b2
=1
.現(xiàn)過橢圓M的右焦點(diǎn)作斜率不為0的直線l于橢圓交于A,B兩點(diǎn),過A,B分別作橢圓的切線l1,l2
①證明:l1,l2的交點(diǎn)P在一條定直線上;
②求△ABP面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義函數(shù)fk(x)=
alnx
xk
為f(x)的k階函數(shù).
(1)求一階函數(shù)f1(x)的單調(diào)區(qū)間;
(2)討論方程f2(x)=1的解的個(gè)數(shù);
(3)求證:3lnn!≤1+23e+33e2+…+n3en-1(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,橢圓的四個(gè)頂點(diǎn)所圍成菱形的面積為8
2

(1)求橢圓的方程;
(2)四邊形ABCD的頂點(diǎn)在橢圓C上,且對角線AC,BD均過坐標(biāo)原點(diǎn)O,若kAC•kBD=-
1
2

①求
OA
OB
的范圍;
②求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若存在實(shí)常數(shù)k和b,使得函數(shù)f(x)和g(x)對其定義域上的任意實(shí)數(shù)x分別滿足:f(x)≥kx+b和g(x)≤kx+b,則稱直線l:y=kx+b為f(x)和g(x)的“隔離直線”.已知函數(shù)f(x)=x2-1和函數(shù)g(x)=2lnx,那么函數(shù)f(x)和函數(shù)g(x)的隔離直線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于不等式組
2x-3y+2≥0
3x-y-4≤0
x+2y+1≥0
的解(x,y),當(dāng)且僅當(dāng)
x=2
y=2
時(shí),z=x+ay取得最大值,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
i
 1- i 
(其中i為虛數(shù)單位)的模為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,將圓p:x2+y2=4上任意一點(diǎn)P′的縱坐標(biāo)變?yōu)樵瓉淼囊话?nbsp;(橫坐標(biāo)不變),得到點(diǎn)P,并設(shè)點(diǎn)P的軌跡為曲線C.
(1)求C的方程;
(2)設(shè)o為坐標(biāo)原點(diǎn),過點(diǎn)Q(
3
,0)的直線l與曲線C交于兩點(diǎn)A,B,線段AB的中點(diǎn)為N,且
OE
=2
ON
,點(diǎn)E在曲線C上,求直線l:
x
a
+
y
b
=1
的方程.

查看答案和解析>>

同步練習(xí)冊答案