已知f(2x)=x2+
1
x
+1,求f(x)的解析式.
考點:函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質及應用
分析:由已知中函數(shù)的解析式,利用“配湊法”可得f(2x)=
1
4
(2x)2+
2
2x
+1,進而用x替換2x后,可得答案.
解答: 解:∵f(2x)=x2+
1
x
+1=
1
4
(2x)2+
2
2x
+1,
∴f(x)=
1
4
x2+
2
x
+1.
點評:本題考查的知識點是函數(shù)解析式的求解及常用方法,難度不大,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知log63=0.6131,log6x=0.3869,則x=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:a2-16≥0,命題q:a+4≤0,則p是q的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|log
1
3
(x-a)2<0},B={x||x-3|<a},若A∪B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=
x2+5
x2-2
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,前n項和為Sn,a1=5,且Sn+1=Sn+2an=2n+2(n∈N+).
(1)求a2,a3的值;
(2)設bn=
an
2n
,若實數(shù)λ使得數(shù)列{bn}為等差數(shù)列,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U=R,集合A={x|3m-1<x<2m},集合B={x|-1<x<3},若A?∁UB,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

8個“+”和6個“-”排成一列,則使符號改變三次的排法有幾種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex-ax-1(a∈R).
(Ⅰ)當a>0時,求函數(shù)f(x)的單調區(qū)間;
(Ⅱ)函數(shù)F(x)=f(x)-xlnx在定義域內是否存在零點?若存在,請指出有幾個零點;若不存在,請說明理由;
(Ⅲ)若f(x)≥0對任意x≥0恒成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案