設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,已知S5=5,S9=27,則S7=
 
考點(diǎn):等差數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:利用等差數(shù)列的前n項(xiàng)和公式即可得出.
解答: 解:∵數(shù)列{an}是等差數(shù)列,S5=5,S9=27,
5=5a1+
5×4
2
d
27=9a1+
9×8
2
d
,
解得
a1=-1
d=1

∴S7=7a1+
7×6
2
d
=-7+21=14.
故答案為:14.
點(diǎn)評(píng):本題考查了等差數(shù)列的前n項(xiàng)和公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用紅,黃,藍(lán)三種顏色涂標(biāo)有1,2,…,9的小正方形,如圖所示,要求相鄰的小正方形的顏色不同,標(biāo)有3,5,7的顏色相同,問有多少種涂法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(x+
1
x
4(y+1)5展開式中x2y2的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果直線l⊥平面α,①若直線m⊥l,則m∥α;②若m⊥α,則m∥l;③若m∥α,則m⊥l;④若m∥l,則m⊥α,上述判斷正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,四棱錐P-ABCD中,底面ABCD為邊長(zhǎng)為2的菱形∠BAD=60°,PA=PD=2,平面PAD⊥平面ABCD,則它的正視圖的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+kx+4
x
(1≤x≤3),若對(duì)定義域內(nèi)的任意實(shí)數(shù)x1、x2、x3不等式f(x1)+f(x2)>f(x3)恒成立,則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,-2)
,
b
=(x,4)
,且
a
b
,則|
a
-
b
|=( 。
A、5
3
B、3
5
C、2
5
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①若A、B、C、D是空間任意四點(diǎn),則有
AB
+
BC
+
CD
+
DA
=0;
②|
a
|-|
b
|=|
a
+
b
|是
a
、
b
共線的充要條件;
③若
a
、
b
共線,則
a
b
所在直線平行;
④對(duì)空間任意一點(diǎn)P與不共線的三點(diǎn)A、B、C,若
OP
=x
OA
+y
OB
+z
OC
(x,y,z∈R),則P、A、B、C四點(diǎn)共面.其中不正確命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的兩頂點(diǎn)坐標(biāo)A(-1,0),B(1,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點(diǎn)分別為P,Q,R,|CP|=1(從圓外一點(diǎn)到圓的兩條切線段長(zhǎng)相等),動(dòng)點(diǎn)C的軌跡為曲線M.
(I)求曲線M的方程;
(Ⅱ)設(shè)直線BC與曲線M的另一交點(diǎn)為D,當(dāng)點(diǎn)A在以線段CD為直徑的圓上時(shí),求直線BC的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案