【題目】如圖,四邊形是正方形 平面, // , , 的中點

1)求證: ;

2)求證: //平面;

3)求二面角的大。

【答案】(1)見解析;(2)見解析;(3)

【解析】試題分析:1)以為原點,分別以、的方向為軸、軸、軸的正方向建立空間直角坐標系.求出相關點的坐標,通過計算,證明;(2)取的中點,連接,證明,然后證明平面;(3)求出平面的一個法向量,平面的法向量,利用空間向量的數(shù)量積求解二面角的余弦值.

試題解析:1)證明:依題意, 平面如圖,以為原點,分別以、、的方向為軸、軸、軸的正方向建立空間直角坐標系.

依題意,可得 , , , , ,因為 ,所以

所以.

2)證明:取的中點,連接

因為 ,

所以,所以

又因為平面, 平面

所以平面

3)解:因為, ,

所以平面,故為平面的一個法向量.

設平面的法向量為,

因為,

所以

,得, ,故

所以,所以二面角的大小為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了解某校學生參加社區(qū)服務的情況,采用按性別分層抽樣的方法進行調(diào)查.已知該校共有學生960人,其中男生560人,從全校學生中抽取了容量為的樣本,得到一周參加社區(qū)服務的時間的統(tǒng)計數(shù)據(jù)好下表:

超過1小時

不超過1小時

20

8

12

m

(Ⅰ)求;

(Ⅱ)能否有95%的把握認為該校學生一周參加社區(qū)服務時間是否超過1小時與性別有關?

(Ⅲ)以樣本中學生參加社區(qū)服務時間超過1小時的頻率作為該事件發(fā)生的概率,現(xiàn)從該校學生中隨機調(diào)查6名學生,試估計6名學生中一周參加社區(qū)服務時間超過1小時的人數(shù).

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表提供了工廠技術改造后某種型號設備的使用年限x和所支出的維修費y(萬元)的幾組對照數(shù)據(jù):

x(年)

2

3

4

5

6

y(萬元)

1

2.5

3

4

4.5

1)若知道yx呈線性相關關系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程;

2)已知該工廠技術改造前該型號設備使用10年的維修費用為9萬元,試根據(jù)(1)求出的線性回歸方程,預測該型號設備技術改造后,使用10年的維修費用能否比技術改造前降低?參考公式:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,其中, ,如果函數(shù)與函數(shù)都有零點且它們的零點完全相同,則________________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從參加高三模擬考試的學生中隨機抽取60名學生,將其數(shù)學成績(均為整數(shù))分成六組[90,100),[100,110),,[140150]后得到如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:

1)求分數(shù)在[120130)內(nèi)的頻率;

2)若在同一組數(shù)據(jù)中,將該組區(qū)間的中點值(如:組區(qū)間[100110)的中點值為=105)作為這組數(shù)據(jù)的平均分,據(jù)此,估計本次考試的平均分;

3)用分層抽樣的方法在分數(shù)段為[110,130)的學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有1人在分數(shù)段[120130)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市環(huán)保部門為了讓全市居民認識到冬天燒煤取暖對空氣數(shù)值的影響,進而喚醒全市人民的環(huán)保節(jié)能意識。對該市取暖季燒煤天數(shù)與空氣數(shù)值不合格的天數(shù)進行統(tǒng)計分析,得出下表數(shù)據(jù):

(天)

9

8

7

5

4

(天)

7

6

5

3

2

(1)以統(tǒng)計數(shù)據(jù)為依據(jù),求出關于的線性回歸方程

2)根據(jù)(1)求出的線性回歸方程,預測該市燒煤取暖的天數(shù)為20時空氣數(shù)值不合格的天數(shù).

參考公式:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,四邊形為菱形, , ,且平面平面.

(1)求證: ;

(2)若, ,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若,證明:

2)若,且,求的取值范圍;

3)若,且方程個不同的根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓E經(jīng)過M(﹣10),N01),P,)三點.

1)求圓E的方程;

2)若過點C2,2)作圓E的兩條切線,切點分別是AB,求直線AB的方程.

查看答案和解析>>

同步練習冊答案