【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,以坐標原點為極點,軸為正半軸建立極坐標系,圓的極坐標方程為,直線的參數(shù)方程為(t為參數(shù)).

(1)求圓的直角坐標方程;

(2)求直線分圓所得的兩弧程度之比.

【答案】(1);(2).

【解析】

試題分析:(1)將兩邊同乘以,利用公式可得的直角坐標方程;(2)將直線參數(shù)方程化為普通方程,根據(jù)點到直線距離公式及圓的性質(zhì)可得直線被圓截得的弦所對的圓心角為,進而可得直線分圓所得的兩弧程度之比.

試題解析:(1)圓的極坐標方程可化為,

利用極坐標公式,化為普通方程是,即.

(2)圓的方程為,圓心,半徑,

直線的方程為,即

圓心到直線的距離,

直線被圓截得的弦所對的圓心角為

直線將圓分成弧長之比為的兩段圓弧.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時,求不等式的解集;

(2)對任意,若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對定義在區(qū)間上的函數(shù),如果對任意,都有成立,那么稱函數(shù)在區(qū)間上可被替代,稱為替代區(qū)間.給出以下問題:

在區(qū)間上可被替代;

可被替代的一個替代區(qū)間;

在區(qū)間可被替代,則;

,,則存在實數(shù),使得在區(qū)間上被替代; 其中真命題有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若在定義域內(nèi)存在實數(shù)滿足,則稱局部奇函數(shù).

為定義在上的局部奇函數(shù)

方程有兩個不等實根;

為假命題,為真命題,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是數(shù)列的前n項和,滿足,正項等比數(shù)列的前n項和為,且滿足.

() 求數(shù)列{an}和{bn}的通項公式; () ,求數(shù)列{cn}的前n項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(10分)如圖所示,在三棱錐中,底面,,,,動點D在線段AB

(1)求證:平面平面

(2)當(dāng)時,求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式的解集為

(1)求的值;

(2)若不等式的解集為,不等式的解集為,且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,是函數(shù) 圖象上的任意兩點,且角的終邊經(jīng)過點,若時,的 最小值為.

(1)求函數(shù)的解析式;

(2)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b是不同的直線,α,β是不同的平面,則下列四個命題中正確的是________.(填序號)

① 若a⊥b,a⊥α,則b∥α;② 若a∥α,α⊥β,則a⊥β;

③ 若a⊥β,α⊥β,則a∥α;④ 若a⊥b,a⊥α,b⊥β,則α⊥β.

查看答案和解析>>

同步練習(xí)冊答案