已知函數(shù)f(x)滿足xf′(x)+f(x)=
ex
x
,f(1)=e,則當x>0時,f(x)( 。
A、有極大值,無極小值
B、有極小值,無極大值
C、既有極大值,又有極小值
D、既無極大值也無極小值
考點:利用導數(shù)研究函數(shù)的極值,利用導數(shù)研究函數(shù)的單調(diào)性
專題:
分析:由函數(shù)f(x)求導得:f′(x)=
ex
x2
-
f(x)
x
=
ex-xf(x)
x2
,令g(x)=ex-xf(x),從而g′(x)=ex(1-
1
x
),若x>1,則g′(x)>0,g(x)>g(1)=0,f(x)遞增,若0<x<1,則g′(x)<0,g(x)>g(1)=0,f(x)遞增,因此函數(shù)f(x)既無極大值又無極小值;
解答: 解:∵f′(x)=
ex
x2
-
f(x)
x
=
ex-xf(x)
x2
,
令g(x)=ex-xf(x),
∴g′(x)=ex-(xf′(x)+f(x))
=ex(1-
1
x
),
若x>1,則g′(x)>0,g(x)>g(1)=0,f(x)遞增,
若0<x<1,則g′(x)<0,g(x)>g(1)=0,f(x)遞增,
∴函數(shù)f(x)既無極大值又無極小值;
故選:D.
點評:本題考察了利用導數(shù)求函數(shù)的單調(diào)性,求函數(shù)的極值問題,本題是一道基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cosx+
1
2
x,x∈[0,π],若f(x)在x0處取得極大值,則f(x0)的值為( 。
A、1
B、
π
4
C、
6
3
12
D、
3+π
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在復平面內(nèi),復數(shù)z對應的點在第一象限,且滿足z2+2
.
z
=2,則復數(shù)z的共軛復數(shù)
.
z
的虛部為( 。
A、1B、-iC、-1D、i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的流程圖,若輸出的結(jié)果是9,則判斷框中的橫線上可以填入的最大整數(shù)為( 。
A、17B、16C、15D、14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的導數(shù)f′(x)=(x+2)(x-a),若f(x)在x=a處取得極大值,則函數(shù)f(x)的單調(diào)減區(qū)間為(  )
A、[a,-2]
B、[a,+∞)
C、(-∞,-2]
D、[-2,a]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設k∈R,則“k≠1”是“直線l:y=kx+
2
與圓x2+y2=1不相切”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設[x]表示不超過x的最大整數(shù),如[1.5]=1,[-1.5]=-2,若函數(shù)f(x)=
1-ex
1+ex
,則函數(shù)g(x)=[f(x)]+[f(-x)]的值域為( 。
A、{-1}
B、{-1,0,1}
C、{0}
D、{-1,0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和Sn滿足S3=21,S5=25.
(Ⅰ)求{an}的通項公式;
(Ⅱ)求{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是公差大于零的等差數(shù)列,數(shù)列{bn}為等比數(shù)列,且a1=b1=2,a2-b2=1,a3+b3=16.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)記cn=abn,數(shù)列{cn}前n項的和為Sn,集合A={n∈N*|Sn>6•2n+n2-8n},求集合A.

查看答案和解析>>

同步練習冊答案