20.不等式x2-2x-3<0的解集為( 。
A.{x|-1<x<3}B.C.RD.{x|-3<x<1}

分析 利用二次不等式的解法,求解即可.

解答 解:x2-2x-3=0,可得方程的解為:x=-1,x=3.
不等式x2-2x-3<0的解集為:{x|-1<x<3}.
故選:A.

點評 本題考查二次不等式的解法,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知命題p:不等式m2+2m-1≤x+$\frac{1}{x}$對任意x>0恒成立,命題q:指數(shù)函數(shù)y=(5-m2x是增函數(shù).若“p∨q”為真,“p∧q”為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.如果奇函數(shù)f(x)在區(qū)間[-10,-4]上是減函數(shù)且最大值為9,那么f(x)在區(qū)間[4,10]上是( 。
A.增函數(shù)且最小值是-9B.增函數(shù)且最大值是-9
C.減函數(shù)且最大值是-9D.減函數(shù)且最小值是-9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,則z=2x+4y的最大值為( 。
A.5B.-38C.10D.38

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知直線的方程為3x+4y-3=0,圓的方程為(x-1)2+(y-1)2=1,則直線與圓的位置關系為( 。
A.相交B.相切C.相離D.無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知△ABC,角A,B,C的對邊分別為a,b,c且a2-c2=b(a-b)且c=$\sqrt{6}$
(1)求角C;   
(2)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.討論函數(shù)f(x)=$\left\{\begin{array}{l}{x+1}&{x≥1}\\{3-x}&{x<1}\end{array}\right.$在點x=1處的連續(xù)性,并畫出它的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.設f(x)=$\frac{{x}^{2}-x}{\sqrt{2x+1}}$,g(x)=$\frac{\sqrt{2x+1}}{x-1}$,則f(x)•g(x)=x+1,x∈[-$\frac{1}{2}$,1)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知x,y∈R,則“x2+y2<1”是“xy+1>x+y”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案