【題目】已知直線經(jīng)過橢圓E:)的左焦點和下頂點,原點到直線的距離為

1)求橢圓的離心率;

2)如上圖,是圓的一條直徑,若橢圓經(jīng)過,兩點,求橢圓的方程.

【答案】1;(2

【解析】

1)求出經(jīng)過點的直線方程,運用點到直線的距離公式,結(jié)合離心率公式即可計算出答案

2)由(1)知橢圓的方程為,設出直線AB的方程,代入橢圓方程,運用韋達定理和弦長公式,結(jié)合圓的直徑和中點坐標公式,解方程即可求出

解:(1)過點的直線的方程為,

則原點到直線的距離

,.

2)由(1)知,橢圓的方程為.

依題意,圓心是線段的中點,

所以不與軸垂直.

設其直線方程為,代入橢圓方程得

.

,則.

,得,解得.從而.

于是.

,得,解得.故橢圓的方程為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,連接橢圓的四個頂點得到的菱形的面積為4.

1)求橢圓的方程;

2)設過點的直線與橢圓相交另一點,若,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出三個命題:①直線上有兩點到平面的距離相等,則直線平行平面;②夾在兩平行平面間的異面直線段的中點的連線平行于這個平面;③過空間一點必有唯一的平面與兩異面直線平行.正確的是( )

A. ②③B. ①②C. ①②③D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國農(nóng)業(yè)銀行開始為全國農(nóng)行ATM機安裝刷臉取款系統(tǒng).某農(nóng)行營業(yè)點為調(diào)查居民對刷臉取款知識的了解情況,制作了刷臉取款知識有獎調(diào)查問卷,發(fā)放給2018年度該行的所有客戶,并從參與調(diào)查且年齡(單位:歲)在[25,55]內(nèi)的客戶中隨機抽取100名給予物質(zhì)獎勵,再從中選出一名客戶參加幸運大抽獎.調(diào)查結(jié)果按年齡分成6組,制作成如下的頻數(shù)分布表和女客戶的年齡莖葉圖,其中abc=2∶4∶5.

年齡/

[25,30)

[30,35)

[35,40)

[40,45)

[45,50)

[50,55]

頻數(shù)/

5

a

b

c

15

25

女客戶的年齡莖葉圖

幸運大抽獎方案如下:客戶最多有兩次抽獎機會,每次抽獎的中獎率均為,第一次抽獎,若未中獎,則抽獎結(jié)束.若中獎,則通過拋擲一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進行第二次抽獎.規(guī)定:拋出的硬幣,若反面朝上,則客戶獲得5000元獎金,不進行第二次抽獎;若正面朝上,客戶需進行第二次抽獎,且在第二次抽獎中,如果中獎,則獲得獎金10000元,如果未中獎,則所獲得的獎金為0元.

(1)求a,b,c的值,若分別從男、女客戶中隨機選取1人,求這2人的年齡均在[40,45)內(nèi)的概率;

(2)若參加幸運大抽獎的客戶所獲獎金(單位:元)用X表示,求X的分布列與數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出以下結(jié)論:

①命題“若,則”的逆否命題為“若,則”;

②“”是“”的充分條件;

③命題“若,則方程有實根”的逆命題為真命題;

④命題“若,則”的否命題是真命題.

則其中錯誤的是__________.(填序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知ABC的內(nèi)角A,B,C的對邊分別為ab,c

(1)若的面積,求a+c值;

(2)若2cosC+)=c2,求角C

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)處切線方程;

2)討論函數(shù)的單調(diào)區(qū)間;

3)對任意,恒成立,求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)生產(chǎn)的某種產(chǎn)品被檢測出其中一項質(zhì)量指標存在問題.該企業(yè)為了檢查生產(chǎn)該產(chǎn)品的甲、乙兩條流水線的生產(chǎn)情況,隨機地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取50件產(chǎn)品作為樣本,測出它們的這一項質(zhì)量指標值.若該項質(zhì)量指標值落在內(nèi),則為合格品,否則為不合格品.如圖是甲流水線樣本的頻數(shù)分布表和乙流水線樣本的頻率分布直方圖.

(1)根據(jù)頻率分布直方圖,估計乙流水線生產(chǎn)的產(chǎn)品該質(zhì)量指標值的中位數(shù);

(2)若將頻率視為概率,某個月內(nèi)甲、乙兩條流水線均生產(chǎn)了5000件產(chǎn)品,則甲、乙兩條流水線分別生產(chǎn)出不合格品約多少件?

(3)根據(jù)已知條件完成下面列聯(lián)表,并回答是否有的把握認為“該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與甲、乙兩條流水線的選擇有關(guān)”?

甲流水線

乙流水線

合計

合格品

不合格品

合計

附:,其中.

臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)其中.

(1)求過點和函數(shù)的圖像相切的直線方程

(2)若對任意,恒成立,的取值范圍

(3)若存在唯一的整數(shù),使得,的取值范圍.

查看答案和解析>>

同步練習冊答案