【題目】某奶茶公司對一名員工進(jìn)行測試以便確定其考評級別.公司準(zhǔn)備了兩種不同的奶茶共5 杯,其顏色完全相同,并且其中3杯為奶茶,另外2杯為奶茶,公司要求此員工一一品嘗后,從5杯奶茶中選出2杯奶茶.若該員工2杯都選奶茶,則評為優(yōu)秀;若2 杯選對1奶茶,則評為良好;否則評為及格.假設(shè)此人對兩種奶茶沒有鑒別能力.

(Ⅰ)求此人被評為優(yōu)秀的概率;()求此人被評為良好及以上的概率.

【答案】(1)10(2)(3)

【解析】分析:()利用古典概型求此人被評為優(yōu)秀的概率.()利用古典概型求此人被評為良好及以上的概率.

詳解:假設(shè)3奶茶為、、, 2杯為奶茶為、則從五杯奶茶中任選兩杯的所有可能結(jié)果為、、、、、、、、.

10種結(jié)果.

(Ⅰ)記此人被評為優(yōu)秀”為事件,則事件包含的所有結(jié)果為、、,3種結(jié)果,;

Ⅱ)記此人被評為良好及以上”為事件,則事件包含的所有結(jié)果為、、、、、、、,9種結(jié)果,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體中,平面,的中點,的中點,點在線段上,且

(1)證明:平面

(2)若二面角的大小為60°,求BDC的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列和等比數(shù)列滿足, ,

1的通項公式;

2求和:

【答案】1;(2

【解析】試題分析:(1)根據(jù)等差數(shù)列, ,列出關(guān)于首項公差的方程組,解方程組可得的值,從而可得數(shù)列的通項公式;(2)利用已知條件根據(jù)題意列出關(guān)于首項 ,公比 的方程組,解得、的值,求出數(shù)列的通項公式,然后利用等比數(shù)列求和公式求解即可.

試題解析:(1)設(shè)等差數(shù)列{an}的公差為d. 因為a2+a4=10,所以2a1+4d=10.解得d=2.

所以an=2n1.

(2)設(shè)等比數(shù)列的公比為q. 因為b2b4=a5,所以b1qb1q3=9.

解得q2=3.所以.

從而.

型】解答
結(jié)束】
18

【題目】已知命題:實數(shù)滿足,其中;命題:方程表示雙曲線.

(1)若,且為真,求實數(shù)的取值范圍;

(2)若的充分不必要條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)處有極值,求的值;

(2)若對于任意的上單調(diào)遞增,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,點在直線.數(shù)列滿足,前9項和為153.

(1)求數(shù)列、的通項公式;

(2)設(shè),數(shù)列的前項和為,求及使不等式對一切都成立的最小正整數(shù)的值;

(3)設(shè),問是否存在,使得成立?若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在邊長為12的正方形AA'A1'A1中,BB1∥CC1∥AA1,且AB=3,BC=4,AA1'分別交BB1,CC1于點P,Q,將該正方形沿BB1、CC1折疊,使得A'A1'與AA1重合,構(gòu)成如圖2所示的三棱柱ABC﹣A1B1C1

(1)求三棱錐P﹣ABC與三棱錐Q﹣PAC的體積之和;

(2)求直線AQ與平面BCC1B1所成角的正弦值;

(3)求三棱錐Q﹣ABC的外接球半徑r.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】”是“對任意的正數(shù), ”的( )

A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件

【答案】A

【解析】分析:根據(jù)基本不等式,我們可以判斷出”?“對任意的正數(shù)x2x+≥1”對任意的正數(shù)x,2x+≥1”?“a=

真假,進(jìn)而根據(jù)充要條件的定義,即可得到結(jié)論.

解答:解:當(dāng)“a=時,由基本不等式可得:

對任意的正數(shù)x,2x+≥1”一定成立,

“a=”?“對任意的正數(shù)x2x+≥1”為真命題;

對任意的正數(shù)x,2x+≥1時,可得“a≥

對任意的正數(shù)x2x+≥1”?“a=為假命題;

“a=對任意的正數(shù)x2x+≥1充分不必要條件

故選A

型】單選題
結(jié)束】
9

【題目】如圖是一幾何體的平面展開圖,其中為正方形, , 分別為 的中點,在此幾何體中,給出下面四個結(jié)論:①直線與直線異面;②直線與直線異面;③直線平面;④平面平面

其中一定正確的選項是( )

A. ①③ B. ②③ C. ②③④ D. ①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列和等比數(shù)列滿足, ,

1的通項公式;

2求和:

【答案】1;(2

【解析】試題分析:(1)根據(jù)等差數(shù)列 列出關(guān)于首項、公差的方程組,解方程組可得的值,從而可得數(shù)列的通項公式;(2)利用已知條件根據(jù)題意列出關(guān)于首項 ,公比 的方程組,解得、的值求出數(shù)列的通項公式,然后利用等比數(shù)列求和公式求解即可.

試題解析:(1)設(shè)等差數(shù)列{an}的公差為d. 因為a2+a4=10,所以2a1+4d=10.解得d=2.

所以an=2n1.

(2)設(shè)等比數(shù)列的公比為q. 因為b2b4=a5,所以b1qb1q3=9.

解得q2=3.所以.

從而.

型】解答
結(jié)束】
18

【題目】已知命題:實數(shù)滿足,其中;命題:方程表示雙曲線.

(1)若,且為真,求實數(shù)的取值范圍;

(2)若的充分不必要條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三年級實驗班與普通班共1000名學(xué)生,其中實驗班學(xué)生200人,普通班學(xué)生800人,現(xiàn)將高三一模考試數(shù)學(xué)成績制成如圖所示頻數(shù)分布直方圖,按成績依次分為5組,其中第一組([0, 30)),第二組([30, 60)),第三組([60, 90)),的頻數(shù)成等比數(shù)列,第一組與第五組([120, 150))的頻數(shù)相等,第二組與第四組([90, 120))的頻數(shù)相等。

(1)求第三組的頻率;

(2)已知實驗班學(xué)生成績在第五組,在第四組,剩下的都在第三組,試估計實驗班學(xué)生數(shù)學(xué)成績的平均分;

(3)在(2)的條件下,按分層抽樣的方法從第5組中抽取5人進(jìn)行經(jīng)驗交流,再從這5人中隨機(jī)抽取3人在全校師生大會上作經(jīng)驗報告,求抽取的3人中恰有一個普通班學(xué)生的概率。

查看答案和解析>>

同步練習(xí)冊答案