【題目】已知函數(shù).

(1)若函數(shù)處有極值,求的值;

(2)若對于任意的上單調(diào)遞增,求的最小值.

【答案】(1) (2).

【解析】試題分析:(1)由 ,根據(jù)題意設(shè)有解得,進(jìn)行檢驗舍去得所求b值;(2)由題意知對任意的都成立,所以對任意的都成立,因為,所以上為單調(diào)增函數(shù)或為常數(shù)函數(shù),①當(dāng)為常數(shù)函數(shù)時, ;②當(dāng)為增函數(shù)時, ,即對任意都成立,求二次函數(shù)最大值即得解.

試題解析:

(1)由

于是,根據(jù)題意設(shè)有,

解得,

當(dāng)時,所以函數(shù),所以函數(shù)有極值點;

當(dāng)時,所以函數(shù),所以無極值點,

所以 .

(2)由題意知對任意的都成立,

所以對任意的都成立,

因為,所以上為單調(diào)增函數(shù)或為常數(shù)函數(shù),

①當(dāng)為常數(shù)函數(shù)時,

②當(dāng)為增函數(shù)時,

對任意都成立,

,所以時, ,所以

所以的最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓心在軸上且通過點的圓與直線相切.

(1)求圓的方程;

(2)已知直線經(jīng)過點,并且被圓C截得的弦長為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的兩個焦點分別為, ,過作橢圓長軸的垂線交橢圓于點,若為等腰直角三角形,則橢圓的離心率是( )

A. B. C. D.

【答案】C

【解析】試題分析:解:設(shè)點Px軸上方,坐標(biāo)為(),為等腰直角三角形,|PF2|=|F1F2|, ,故選D.

考點:橢圓的簡單性質(zhì)

點評:本題主要考查了橢圓的簡單性質(zhì).橢圓的離心率是高考中選擇填空題?嫉念}目.應(yīng)熟練掌握圓錐曲線中ab,ce的關(guān)系

型】單選題
結(jié)束】
8

【題目】”是“對任意的正數(shù), ”的( )

A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于區(qū)間,若函數(shù)同時滿足:①上是單調(diào)函數(shù);②函數(shù),的值域是,則稱區(qū)間為函數(shù)的“保值”區(qū)間.

(1)求函數(shù)的所有“保值”區(qū)間.

(2)函數(shù)是否存在“保值”區(qū)間?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中(為坐標(biāo)原點),已知兩點,,且三角形的內(nèi)切圓為圓,從圓外一點向圓引切線,為切點。

(1)求圓的標(biāo)準(zhǔn)方程.

(2)已知點,且,試判斷點是否總在某一定直線上,若是,求出直線的方程;若不是,請說明理由.

(3)已知點在圓上運(yùn)動,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中, 底面分別是的中點, ,且.

(1)求證: 平面

(2)在線段上是否存在點,使二面角的大小為?若存在,求出的長;

若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某奶茶公司對一名員工進(jìn)行測試以便確定其考評級別.公司準(zhǔn)備了兩種不同的奶茶共5 杯,其顏色完全相同,并且其中3杯為奶茶,另外2杯為奶茶,公司要求此員工一一品嘗后,從5杯奶茶中選出2杯奶茶.若該員工2杯都選奶茶,則評為優(yōu)秀;若2 杯選對1奶茶,則評為良好;否則評為及格.假設(shè)此人對兩種奶茶沒有鑒別能力.

(Ⅰ)求此人被評為優(yōu)秀的概率;()求此人被評為良好及以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的首項,公差.且、分別是等比數(shù)列的第2、3、4項

(1)求數(shù)列的通項公式;

(2)設(shè)數(shù)列滿足,的值(結(jié)果保留指數(shù)形式).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(改編)已知正數(shù)數(shù)列的前項和為,且滿足;在數(shù)列中,

(1)求數(shù)列的通項公式;

(2)設(shè),數(shù)列的前項和為. 若對任意,存在實數(shù),使恒成立,求的最小值;

(3)記數(shù)列的前項和為,證明:.

查看答案和解析>>

同步練習(xí)冊答案