某中學(xué)對高三年級進(jìn)行身高統(tǒng)計(jì),測量隨機(jī)抽取的40名學(xué)生的身高,其結(jié)果如下(單位:cm)
分組[140,145)[145,150)[150,155)[155,160)[160,165)[165,170)[170,175)[175,180)合計(jì)
人數(shù)12591363140
(1)列出頻率分布表;
(2)畫出頻率分布直方圖;
(3)估計(jì)數(shù)據(jù)落在[150,170]范圍內(nèi)的概率.
考點(diǎn):頻率分布直方圖,頻率分布表
專題:綜合題,概率與統(tǒng)計(jì)
分析:(1)根據(jù)所給數(shù)據(jù),統(tǒng)計(jì)頻數(shù),計(jì)算出各組的頻率,列出頻率分布表;
(2)以頻率/組距為縱坐標(biāo),組距為橫坐標(biāo)作圖出頻率分布直方圖.
(3)算出數(shù)據(jù)落在[150,170]范圍內(nèi)的頻率的和,以此估計(jì)數(shù)據(jù)落在[150,170]范圍內(nèi)的概率.
解答: 解:(1)根據(jù)題意可列出頻率分布表:
分 值頻 數(shù)頻 率
[140,145]10.025
[145,150]20.050
[150,155]50.125
[155,160]90.225
[160,165]130.325
[165,170]60.15
[170,175]30.075
[175,180]10.025
合 計(jì)401.00
(2)頻率分布直方圖如下:

(3)數(shù)據(jù)落在[150,170]范圍內(nèi)的概率約為0.825.
點(diǎn)評:本題考查頻率分布直方圖的作法,頻率分布直方圖是一個(gè)比較重要的考點(diǎn),這幾年的高考中多有體現(xiàn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=sin(ωx+φ)(ω>0,0<φ≤
π
2
),且此函數(shù)的圖象如圖所示,則點(diǎn)(ω,φ)的坐標(biāo)是( 。
A、(4,
π
2
B、(4,
π
4
C、(2,
π
2
D、(2,
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x2+a)(a>0)
(1)若a=2,求f(x)在點(diǎn)(1,f(1))處的切線方程.
(2)令g(x)=f(x)-
2
3
x3,求證:在區(qū)間(0,
1
a
)上,g(x)存在唯一極值點(diǎn).
(3)令h(x)=
f′(x)
2x
,定義數(shù)列{xn}:x1=0,xn+1=h(xn).當(dāng)a=2且xk∈(0,
1
2
](k=2,3,4…)時(shí),求證:對于任意的m∈N*,恒有|xm+k-xk|<
1
3•4k-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax3+x恰有三個(gè)單調(diào)區(qū)間,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的參數(shù)方程是
x=cosθ
y=sinθ
(θ為參數(shù)),以直角坐標(biāo)系xOy的原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ(cosθ+sinθ)=4.
(1)試求曲線C上任意點(diǎn)M到直線l的距離的最大值;
(2)設(shè)P是l上一點(diǎn),射線OP交曲線C與R點(diǎn),又點(diǎn)Q在射線OP上,且滿足|OP|•|OQ|=|OR|2,當(dāng)點(diǎn)P在直線l上移動時(shí),試求動點(diǎn)Q的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示.△ABC中,AB>AC,作∠FBC=∠ECB=
1
2
∠A,E,F(xiàn)分別在邊AC,AB上.求證:BE=CF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3x2+3a|x-1|,a∈R.
(1)若a=0,當(dāng)x∈[-1,3]時(shí),求函數(shù)f(x)的最小值;
(2)設(shè)-1<a<1,且函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2,若|x1-x2|=
3
,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差d>0,前n項(xiàng)和為Sn,且滿足前三項(xiàng)的和為9,前三項(xiàng)的積為15.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足bn=
1
Sn+n
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)對于任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0時(shí)f(x)<0,f(1)=-1.
(1)判斷f(x)的單調(diào)性,并用定義法證明;
(2)求f(x)在[0,3]上的值域.

查看答案和解析>>

同步練習(xí)冊答案