已知平面內(nèi)一動點P到點F(1,0)的距離與點P到y(tǒng)軸的距離的差等于1.
(Ⅰ)求動點P的軌跡C的方程;
(Ⅱ)過點F作兩條斜率存在且互相垂直的直線l1,l2,設(shè)l1與軌跡C相交于點A,B,l2與軌跡C相交于點D,E,求的最小值.

(Ⅰ)當x≥0時,y2=4x;當x<0時,y=0;(Ⅱ)16.

解析試題分析:(Ⅰ)要求動點P的軌跡C,設(shè)動點P的坐標為(x,y),根據(jù)題意列出關(guān)系式-|x|=1,化簡得y2=2x+2|x|,式中有絕對值,需要根據(jù)x討論為當x≥0時,y2=4x;當x<0時,y=0;(Ⅱ)由題意知,直線l1的斜率存在且不為0,可以設(shè)為k,則l1的方程為y=k(x-1),聯(lián)立得k2x2-(2k2+4)x+k2=0,接著設(shè)A(x1,y1),B(x2,y2),則x1,x2是上述方程的兩個實根,于是x1+x2=2+,x1x2=1.而l1⊥l2,則l2的斜率為-,設(shè)D(x3,y3),E(x4,y4),則同理可得x3+x4=2+4k2,x3x4=1,利用坐標表示出,化簡得=8+4(k2)≥8+4×2=16,故當且僅當k2,即k=±1時,取最小值16.
試題解析:(Ⅰ)設(shè)動點P的坐標為(x,y),由題意有
-|x|=1,
化簡,得y2=2x+2|x|.
當x≥0時,y2=4x;當x<0時,y=0.
∴動點P的軌跡C的方程為y2=4x(x≥0)和y=0(x<0).
(Ⅱ)由題意知,直線l1的斜率存在且不為0,設(shè)為k,則l1的方程為y=k(x-1).
得k2x2-(2k2+4)x+k2=0.
設(shè)A(x1,y1),B(x2,y2),則x1,x2是上述方程的兩個實根,于是
x1+x2=2+,x1x2=1.
∵l1⊥l2,∴l(xiāng)2的斜率為-
設(shè)D(x3,y3),E(x4,y4),則同理可得x3+x4=2+4k2,x3x4=1.
=()·()=····
=||||+||||
=(x1+1)(x2+1)+(x3+1)(x4+1)
=x1x2+(x1+x2)+1+x3x4+(x3+x4)+1
=1+(2+)+1+1+(2+4k2)+1
=8+4(k2)≥8+4×2=16.
當且僅當k2,即k=±1時,取最小值16.
考點:1.曲線的軌跡方程求解;2.直線與圓錐曲線問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直線y=kx+b與橢圓交于A、B兩點,記△AOB的面積為S.

(1)求在k=0,0<b<1的條件下,S的最大值;
(2)當|AB|=2,S=1時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的中心在坐標原點,焦點在x軸上,橢圓C上的點到焦點距離的最大值為3,最小值為1.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l:與橢圓C相交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點。求證: 直線l過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的左、右焦點分別是、,下頂點為,線段的中點為為坐標原點),如圖.若拋物線軸的交點為,且經(jīng)過、兩點.

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)為拋物線上的一動點,過點作拋物線的切線交橢圓兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)拋物線的焦點為,準線為,,以為圓心的圓相切于點,的縱坐標為,是圓軸除外的另一個交點.
(I)求拋物線與圓的方程;
(II)過且斜率為的直線交于兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)雙曲線以橢圓的兩個焦點為焦點,且雙曲線的一條漸近線是
(1)求雙曲線的方程;
(2)若直線與雙曲線交于不同兩點,且都在以為圓心的圓上,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的中心在原點,焦點F在軸上,離心率,點在橢圓C上.
(1)求橢圓的標準方程;
(2)若斜率為的直線交橢圓、兩點,且、、成等差數(shù)列,點M(1,1),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

以點F1(-1,0),F(xiàn)2(1,0)為焦點的橢圓C經(jīng)過點(1,)。
(I)求橢圓C的方程;
(II)過P點分別以為斜率的直線分別交橢圓C于A,B,M,N,求證: 使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標系中,點到兩點的距離之和等于4,設(shè)點的軌跡為,直線交于兩點.
(1)寫出的方程;
(2)若點在第一象限,證明當時,恒有.

查看答案和解析>>

同步練習(xí)冊答案