13.設x,y∈R,則x2(x-y)>0是x>y的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既不充分也不必要條件

分析 x2(x-y)>0,可得x>y,反之不成立,例如0>-2.

解答 解:∵x2(x-y)>0,
∴x>y,
反之不成立,例如0>-2.
∴x2(x-y)>0是x>y的充分不必要條件.
故選:A.

點評 本題考查了不等式的性質、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.設$\overrightarrow{a}$=(cos2θ,sinθ),$\overrightarrow$=(1,0),已知$\overrightarrow{a}$•$\overrightarrow$=$\frac{7}{25}$,且$θ∈(\frac{π}{2},π)$,則tanθ=( 。
A.$-\frac{9}{16}$B.$-\frac{3}{4}$C.$\frac{3}{4}$D.$±\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.有一個球心為O,半徑R=2的球,球內有半徑r=$\sqrt{3}$的截面圓,截面圓心為A,連接AO并延長交球面于P點,以截面為底,P為頂點,可以做出一個圓錐,則圓錐的體積為3π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知定義在R上的函數(shù)f(x)的圖象是連續(xù)不斷的,且有如下對應值表:
x123
f(x)3.42.6-3.7
則函數(shù)f(x)一定存在零點的區(qū)間是( 。
A.(-∞,1)B.(1,2)C.(2,3)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.計算:(化到最簡形式)
(1)${64^{\frac{1}{3}}}-{(-\frac{1}{9})^0}+3•{(-2)^2}+{2^3}$;     
(2)$2{log_3}2-{log_3}\frac{32}{9}+{log_3}8+{3^{{{log}_3}2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知關于x的不等式|x-1|+|x-2|≥m對x∈R恒成立.
(Ⅰ)求實數(shù)m的最大值;
(Ⅱ)若a,b,c為正實數(shù),k為實數(shù)m的最大值,且$\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}=k$,求證:a+2b+3c≥9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知△ABC~△A′B′C′,它們的周長差是40,面積比是1:9,求出這兩個三角形的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知向量|$\overrightarrow{a}$|=2,(2$\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+2$\overrightarrow$)=-1,向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{2π}{3}$,則|$\overrightarrow$|等于(  )
A.1B.3C.$\frac{3}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如果如圖程序運行后輸出的結果是132,那么在程序中while后面的表達式應為( 。
A.i>11B.i≥11C.i≤11D.i<11

查看答案和解析>>

同步練習冊答案