已知拋物線C:y2=2px(p>0)的準(zhǔn)線方程為x=-2.
(1)求此拋物線的方程;
(2)已知點(diǎn)B(-1,0),設(shè)直線l:y=kx+b(k≠0)與拋物線C交于不同的兩點(diǎn)P(x1,y1),Q(x2,y2),若x軸是∠PBQ的角平分線,證明直線l過(guò)定點(diǎn),并求出該定點(diǎn)坐標(biāo).
考點(diǎn):直線與圓錐曲線的綜合問(wèn)題
專(zhuān)題:圓錐曲線中的最值與范圍問(wèn)題
分析:(1)由已知條件推導(dǎo)出p=4,由此能求出拋物線C的方程.
(2)將y=kx+b代入y2=8x中,得k2x2+(2bk-8)x+b2=0,利用根的判別式和根與系數(shù)的關(guān)系,結(jié)合已知條件能直線l過(guò)定點(diǎn)(1,0).
解答: (1)解:∵拋物線C:y2=2px(p>0)的準(zhǔn)線方程為x=-2,
p
2
=2
,解得p=4,
∴拋物線C的方程為:y2=8x.
(2)證明:將y=kx+b代入y2=8x中,
得k2x2+(2bk-8)x+b2=0,
△=-32kb+64>0,
由根與系數(shù)的關(guān)系得,x1+x2=
8-2bk
k2
,①x1x2=
b2
k2
.②
∵x軸是∠PBQ的解平分線,
y1
x1+1
=-
y2
x2+1
,即y1(x2+1)+y2(x1+1)=0,
∴(kx1+b)(x2+1)+(kx2+b)(x1+1)=0,
∴2kx1x2+(b+k)(x1+x2)+2b=0,③
將①②代入③并整理得2kb2+(k+b)(8-2bk)+2k2b=0,
∴k=-b,此時(shí)△>0,
∴直線l的方程為y=k(x-1),即直線l過(guò)定點(diǎn)(1,0).
點(diǎn)評(píng):本題考查拋物線方程的求法,考查直線過(guò)定點(diǎn)的證明,解題時(shí)要認(rèn)真審題,注意函數(shù)與方程思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點(diǎn)為F,過(guò)F作斜率為
b
a
的直線與橢圓交于A,B兩點(diǎn),若|FB|≥2|FA|,則橢圓的離心率e的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)F是拋物線C:y2=x的焦點(diǎn),S是拋物線C在第一象限內(nèi)的點(diǎn),且|SF|=
5
4

(1)求點(diǎn)S的坐標(biāo);
(2)以S為圓心的動(dòng)圓與x軸分別交于兩點(diǎn)A,B,直線SA,SB分別交拋物線C于M,N兩點(diǎn),求直線MN的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線l:y=2x-4交拋物線y2=4x于A、B兩點(diǎn),試在拋物線AOB這段曲線上求一點(diǎn)P,使△ABP的面積最大,并求這個(gè)最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直線l:x-y+9=0上任取一點(diǎn)M,過(guò)M作以F1(-3,0),F(xiàn)2(3,0)為焦點(diǎn)的橢圓,當(dāng)M在什么位置時(shí),所作橢圓長(zhǎng)軸最短?并求此橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x,y的方程C:x2+y2-2x-4y+m=0,m∈R.
(Ⅰ)若方程C表示圓,求m的取值范圍;
(Ⅱ)若圓C與直線l:4x-3y+7=0相交于M,N兩點(diǎn),且|MN|=2
3
,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
m
=(bsinx,acosx),
n
=(cosx,-cosx),f(x)=
m
n
+a,其中a,b,x∈R.且滿(mǎn)足f(
π
6
)=2,f′(0)=2
3

(Ⅰ)求a,b的值;
(Ⅱ)若關(guān)于x的方程f(x)-log 
1
3
k=0在區(qū)間[0,
3
]上總有實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C1
x2
a2
-
y2
b2
=1(a>0,b>0)的與雙曲線C2:3x2-y2=1有公共漸近線,且過(guò)點(diǎn)A(1,0).
(1)求雙曲線C1的標(biāo)準(zhǔn)方程;
(2)設(shè)F1、F2分別是雙曲線C1左、右焦點(diǎn).若P是該雙曲線左支上的一點(diǎn),且∠F1PF2=60°,求△F1PF2的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,已知A(-1,0),B(0,1),則滿(mǎn)足PA2-PB2=4且在圓x2+y2=4上的點(diǎn)P的個(gè)數(shù)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案