某幾何體的三視圖如圖所示,則該幾何體的體積為
 

考點(diǎn):由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:由已知中的三視圖可得該幾何體是一個(gè)半圓柱和正方體的組合體,代入柱體積公式,分別計(jì)算體積,相加可得答案.
解答: 解:由已知中的三視圖可得該幾何體是一個(gè)半圓柱和正方體的組合體,
半圓柱的底面半徑為2,故
半圓柱的底面積S=
1
2
×π×222π,
半圓柱的高h(yuǎn)=4.
故半圓柱的體積為:8π,
長(zhǎng)方體的長(zhǎng)寬高分別為4,2,2,
故長(zhǎng)方體的體積為4×2×2=16,
故該幾何體的體積V=16+8π,
故答案為:16+8π
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是由三視圖求體積,解決本題的關(guān)鍵是得到該幾何體的形狀.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)AB為過拋物線y2=2px(p>0)的焦點(diǎn)的弦,則|AB|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若2xlnx≤2mx2-1在(1,e)上恒成立,則m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化235(7)為五進(jìn)制數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(x+θ)的定義域?yàn)镽,當(dāng)θ∈[0,π],且f(x)為偶函數(shù)時(shí),則θ的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x-
3
y=0截圓(x-2)2+y2=4所得劣弧所對(duì)的圓心角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題:p:(x-3)(x+1)>0,命題q:(x-1+m)(x-1-m)>0(m>0),若命題p是命題q的充分不必要條件,則實(shí)數(shù)m的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB是半圓O的直徑,C在半圓上,CD⊥AB于點(diǎn)D,且AD=3DB,AE=EO,設(shè)∠CED=θ,則tan2θ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)O為△ABC的外心,且
OA
+
OB
+
3
OC
=
0
,|
AB
|=1則
CO
•(
CA
+
CB
)值是( 。
A、2-
3
B、2
C、2+
3
D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案