17.如圖,四棱錐P-ABCD中,底面ABCD是平行四邊形,PG⊥平面ABCD,垂足為G,G在線段AD上,AG=$\frac{1}{3}$GD,BG⊥GC,BG=GC=2,E是BC的中點(diǎn),四面體P-BCG的體積為$\frac{8}{3}$.
(1)求異面直線GE與PC所成角的余弦值;
(2)棱PC上是否存在一點(diǎn)F,使DF⊥GC,若存在,求$\frac{PF}{FC}$的值,若不存在,請(qǐng)說明理由.

分析 (1)由已知考查PG,在平面ABCD內(nèi),過C點(diǎn)作CH∥EG交AD于H,連結(jié)PH,則∠PCH(或其補(bǔ)角)就是異面直線GE與PC所成的角.在△PCH中,由余弦定理即可求得cos∠PCH的值.
(2)在平面ABCD內(nèi),過D作DM⊥GC,M為垂足,連結(jié)MF,可證FM∥PG,由GM⊥MD得:GM=GD•cos45°=$\frac{3}{2}$,由DF⊥GC,即可求得$\frac{PF}{FC}$的值.

解答 解:(1)由已知${V}_{P-BGC}={\frac{1}{3}S}_{△BCG}•PG$=$\frac{1}{3}•\frac{1}{2}BG•GC•PG$=$\frac{8}{3}$,
∴PG=4,
在平面ABCD內(nèi),過C點(diǎn)作CH∥EG交AD于H,連結(jié)PH,則∠PCH(或其補(bǔ)角)就是異面直線GE與PC所成的角.
在△PCH中,CH=$\sqrt{2}$,PC=$\sqrt{20}$,PH=$\sqrt{18}$,
由余弦定理得,cos∠PCH=$\frac{\sqrt{10}}{10}$.
(2)在平面ABCD內(nèi),過D作DM⊥GC,M為垂足,連結(jié)MF,又因?yàn)镈F⊥GC,
∴GC⊥平面MFD,∴GC⊥FM,
由平面PGC⊥平面ABCD,
∴FM⊥平面ABCD,
∴FM∥PG,
由GM⊥MD得:GM=GD•cos45°=$\frac{3}{2}$,
∵$\frac{PF}{FC}=\frac{GM}{MC}=\frac{\frac{3}{2}}{\frac{1}{2}}=3$,
∴由DF⊥GC,可得$\frac{PF}{FC}=3$.

點(diǎn)評(píng) 本題主要考查了直線與平面垂直的性質(zhì),異面直線及其所成的角,考查了空間想象能力和推理論證能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知向量$\overrightarrow{m}$=(cosα,1-sinα),$\overrightarrow{n}$=(-cosα,sinα)(α∈R).
(1)若$\overrightarrow{m}$⊥$\overrightarrow{n}$,求角α的值;
(2)若|$\overrightarrow{m}$-$\overrightarrow{n}$|=$\sqrt{3}$,求cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在(1+x+x2n=D${\;}_{n}^{0}$+D${\;}_{n}^{1}$x+D${\;}_{n}^{2}$x2+…+D${\;}_{n}^{r}$xr+…+D${\;}_{n}^{2n-1}$x2n-1+D${\;}_{n}^{2n}$x2n的展開式中,把D${\;}_{n}^{0}$,D${\;}_{n}^{1}$,D${\;}_{n}^{2}$,…,D${\;}_{n}^{2n}$叫做三項(xiàng)式系數(shù).
(1)當(dāng)n=2時(shí),寫出三項(xiàng)式系數(shù)D${\;}_{2}^{0}$,D${\;}_{2}^{1}$,D${\;}_{2}^{2}$,D${\;}_{2}^{3}$,D${\;}_{2}^{4}$的值;
(2)類比二項(xiàng)式系數(shù)性質(zhì)C${\;}_{n+1}^{m}$=C${\;}_{n}^{m-1}$+C${\;}_{n}^{m}$(1≤m≤n,m∈N,n∈N),給出一個(gè)關(guān)于三項(xiàng)式系數(shù)D${\;}_{n+1}^{m+1}$(1≤m≤2n-1,m∈N,n∈N)的相似性質(zhì),并予以證明;
(3)求D${\;}_{2015}^{0}$C${\;}_{2015}^{0}$-D${\;}_{2015}^{1}$C${\;}_{2015}^{1}$+D${\;}_{2015}^{2}$C${\;}_{2015}^{2}$-…+(-1)kD${\;}_{2015}^{k}$C${\;}_{2015}^{k}$+…+D${\;}_{2015}^{2014}$C${\;}_{2015}^{2014}$-D${\;}_{2015}^{2015}$C${\;}_{2015}^{2015}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在(2x2-$\frac{1}{3\sqrt{x}}$)n的展開式中含常數(shù)項(xiàng),則正整數(shù)n的最小值是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.三棱錐O-ABC中,OA⊥OB,OB⊥OC,OC⊥OA,若OA=OB=a,OC=b,D是該三棱錐外部(不含表面)的一點(diǎn),則下列命題正確的是(  )
①存在無數(shù)個(gè)點(diǎn)D,使OD⊥面ABC;
②存在唯一點(diǎn)D,使四面體ABCD為正三棱錐;
③存在無數(shù)個(gè)點(diǎn)D,使OD=AD=BD=CD;
④存在唯一點(diǎn)D,使四面體ABCD有三個(gè)面為直角三角形.
A.①③B.①④C.①③④D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體表面積是124+2$\sqrt{34}$cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=cosx•\sqrt{\frac{1+sinx}{1-sinx}}+sinx•\sqrt{\frac{1+cosx}{1-cosx}}$
(1)當(dāng)$x∈(0,\frac{π}{2})$時(shí),化簡(jiǎn)f(x)的解析式并求f(x)的對(duì)稱軸和對(duì)稱中心;
(2)當(dāng)$x∈(π,\frac{3π}{2})$時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.對(duì)于函數(shù)f(x)定義域中任意的x1,x2(x1≠x2),有如下結(jié)論:
 ①f(x1+x2)=f(x1)f(x2);
②f(x1x2)=f(x1)+f(x2);
 ③$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$.
當(dāng)f(x)=ex時(shí),上述結(jié)論中正確結(jié)論的序號(hào)是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知F1,F(xiàn)2分別為雙曲線的左、右焦點(diǎn),P為雙曲線右支上的任意一點(diǎn),若$\frac{|P{F}_{1}{|}^{2}}{|P{F}_{2}|}$的最小值為8a,則雙曲線的離心率e的取值范圍是( 。
A.(1,+∞)B.(1,2]C.(1,$\sqrt{3}$]D.(1,3]

查看答案和解析>>

同步練習(xí)冊(cè)答案