在△ABC中,三個(gè)內(nèi)角分別是A,B,C,若sinC=2cosA•sinB,則此△ABC一定是( 。
A、直角三角形
B、正三角形
C、等腰三角形
D、等腰直角三角形
考點(diǎn):正弦定理
專題:三角函數(shù)的求值,解三角形
分析:首先把正弦定理及余弦定理代入題中的已知關(guān)系式進(jìn)行化簡(jiǎn)即可得到結(jié)果.
解答: 解:根據(jù)正弦定理:
a
sinA
=
b
sinB
=
c
sinC
=2R
 (1)
余弦定理:cosA=
b2+c2-a2
2bc
(2)
把(1)(2)代入sinC=2cosA•sinB得到:
c=2
b2+c2-a2
2bc
b
化簡(jiǎn)得:
(a+b)(b-a)=0
∴a=b
此△ABC一定是等腰三角形
故選:C
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn):正弦定理及余弦定理,及相關(guān)的化簡(jiǎn)問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+ax的最小值不小于-1,且f(-
1
2
)≤-
3
4

(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)F(x)=f(x)-kx+1,x∈[-2,2],記函數(shù)F(x)的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={2,0,1,4},B={k|k∈R,k2-2∈A,k-2∉A},則集合B中所有元素之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin2x-cos(2x+
π
2
).
(1)求f(
π
8
)的值;
(2)求函數(shù)f(x)的最小正周期以及單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={a|
2008
5-a
∈N+,a∈Z},則M=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)+h(A>0,ω>0,|φ|<π).在一個(gè)周期內(nèi),當(dāng)x=
π
12
時(shí),y取得最大值6,當(dāng)x=
12
時(shí),y取得最小值0.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間與對(duì)稱中心坐標(biāo);
(3)當(dāng)x∈[-
π
12
π
6
]時(shí),函數(shù)y=mf(x)-1的圖象與x軸有交點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(sinα,cos2α),
b
=(1-2sinα,-1),α∈(
π
2
,
2
)若
a
b
=-
8
5
,則tanα的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定點(diǎn)A(-3,0)、B(3,0),動(dòng)點(diǎn)P滿足
|PA|
|PB|
=2,則
PA
PB
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù):①f(x)=-3|x|,②f(x)=x3,③f(x)=
ln|x|
3
,④f(x)=cos
πx
2
,⑤f(x)=-2x2+1中,既是偶函數(shù),又是在區(qū)間(0,+∞)上單調(diào)遞減函數(shù)為
 
(寫出符合要求的所有函數(shù)的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案