【題目】已知函數(shù),在點處的切線方程為.
(Ⅰ)求的值;
(Ⅱ)已知,當(dāng)時,恒成立,求實數(shù)的取值范圍;
(Ⅲ)對于在中的任意一個常數(shù),是否存在正數(shù),使得,請說明理由。
【答案】(1) (2) (3)見解析
【解析】
(Ⅰ)根據(jù)導(dǎo)數(shù)幾何意義列式可得方程組,解得的值;(Ⅱ)先化簡不等式,再研究函數(shù)最小值,利用導(dǎo)數(shù)易得函數(shù)單調(diào)性,由單調(diào)性得最小值,解不等式得結(jié)果;(Ⅲ)先化簡不等式,再研究函數(shù)最小值,利用導(dǎo)數(shù)易得函數(shù)單調(diào)性即得最小值,最后再利用導(dǎo)數(shù)證明.
(Ⅰ)解:函數(shù)的導(dǎo)數(shù)為,在點處的切線方程為,可得,
所以函數(shù)的切線方程為,即,
所以,解得.
(Ⅱ)證明:由(Ⅰ)可得,
因為,所以,即為
可令,
由,,可得,即有,在遞增,
可得,所以,故的取值范圍為;
(Ⅲ)解:對于在中的任意一個常數(shù),
假設(shè)存在正數(shù),使得:.
由成立,
從而存在正數(shù),使得上式成立,只需上式的最小值小于即可.
令,
令,解得,令,解得,
則為函數(shù)的極小值,即為最小值點.
故的最小值為
,
再令
則在遞增,可得,則.
故存在正數(shù),使得.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】養(yǎng)路處建造圓錐形無底倉庫用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉庫的底面直徑為12m,高4m,養(yǎng)路處擬建一個更大的圓錐形倉庫,以存放更多食鹽,現(xiàn)有兩種方案:一是新建的倉庫的底面直徑比原來大4m(高不變);二是高度增加4m(底面直徑不變).
(1)分別計算按這兩種方案所建的倉庫的體積;
(2)分別計算按這兩種方案所建的倉庫的表面積;
(3)哪個方案更經(jīng)濟(jì)些?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為邊長是2的方形, , 分別是, 的中點, , ,且二面角的大小為.
(1)求證: ;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,,,,,為的中點.
(1)求證:BM∥平面ADEF;
(2)求證:平面BDE⊥平面BEC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(1)當(dāng)時,求函數(shù)在點處的切線方程;
(2)若函數(shù)存在兩個極值點,
①求實數(shù)的范圍;
②證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項和, 是等差數(shù)列,且.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)令.求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形與梯形所在的平面互相垂直, ,,點在線段上.
(Ⅰ) 若點為的中點,求證:平面;
(Ⅱ) 求證:平面平面;
(Ⅲ) 當(dāng)平面與平面所成二面角的余弦值為時,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采取分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對學(xué)生進(jìn)行視力調(diào)查。
(I)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目。
(II)若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析,
(1)列出所有可能的抽取結(jié)果;
(2)求抽取的2所學(xué)校均為小學(xué)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是正方形, ,點E在棱PB上.
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)且E為PB的中點時,求AE與平面PDB所成的角的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com