在圓上任取一點(diǎn),設(shè)點(diǎn)在軸上的正投影為點(diǎn).當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),動(dòng)點(diǎn)滿足,動(dòng)點(diǎn)形成的軌跡為曲線.
(1)求曲線的方程;
(2)已知點(diǎn),若、是曲線上的兩個(gè)動(dòng)點(diǎn),且滿足,求的取值范圍.
(1);(2).
解析試題分析:(1)解法一是從條件得到點(diǎn)為線段的中點(diǎn),設(shè)點(diǎn),從而得到點(diǎn)的坐標(biāo)為,利用點(diǎn)在圓上,其坐標(biāo)滿足圓的方程,代入化簡(jiǎn)得到曲線的方程;解法二是利用相關(guān)點(diǎn)法,設(shè)點(diǎn),點(diǎn),通過(guò)條件確定點(diǎn)與點(diǎn)的坐標(biāo)之間的關(guān)系,并利用點(diǎn)的坐標(biāo)表示點(diǎn)的坐標(biāo),再借助點(diǎn)在圓上,其坐標(biāo)滿足圓的方程,代入化簡(jiǎn)得到曲線的方程;(2)先利用條件將化簡(jiǎn)為,并設(shè)點(diǎn),從而得到的坐標(biāo)表達(dá)式,結(jié)合點(diǎn),將的代數(shù)式化為以的二次函數(shù),結(jié)合的取值范圍,求出的取值范圍.
試題解析:(1)解法1:由知點(diǎn)為線段的中點(diǎn).
設(shè)點(diǎn)的坐標(biāo)是,則點(diǎn)的坐標(biāo)是.
因?yàn)辄c(diǎn)在圓上,所以.
所以曲線的方程為;
解法2:設(shè)點(diǎn)的坐標(biāo)是,點(diǎn)的坐標(biāo)是,
由得,,.
因?yàn)辄c(diǎn)在圓上, 所以. ①
把,代入方程①,得.
所以曲線的方程為;
(2)解:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/cb/0/3gkn6.png" style="vertical-align:middle;" />,所以.
所以.
設(shè)點(diǎn),則,即.
所以,
因?yàn)辄c(diǎn)在曲線上,所以.
所以.
所以的取值范圍為.
考點(diǎn):1.相關(guān)點(diǎn)法求軌跡方程;2.平面向量的數(shù)量積;3.二次函數(shù)的最值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)求函數(shù)定義域和函數(shù)圖像所過(guò)的定點(diǎn);
(2)若已知時(shí),函數(shù)最大值為2,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
運(yùn)貨卡車以每小時(shí)x千米的勻速行駛130千米,按交通法規(guī)限制50≤x≤100(單位:千米/小時(shí)).假設(shè)汽油的價(jià)格是每升2元,而汽車每小時(shí)耗油()升,司機(jī)的工資是每小時(shí)14元.
(1)求這次行車總費(fèi)用y關(guān)于x的表達(dá)式;
(2)當(dāng)x為何值時(shí),這次行車的總費(fèi)用最低,并求出最低費(fèi)用的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某地區(qū)注重生態(tài)環(huán)境建設(shè),每年用于改造生態(tài)環(huán)境總費(fèi)用為億元,其中用于風(fēng)景區(qū)改造為億元。該市決定制定生態(tài)環(huán)境改造投資方案,該方案要求同時(shí)具備下列三個(gè)條件:①每年用于風(fēng)景區(qū)改造費(fèi)用隨每年改造生態(tài)環(huán)境總費(fèi)用增加而增加;②每年改造生態(tài)環(huán)境總費(fèi)用至少億元,至多億元;③每年用于風(fēng)景區(qū)改造費(fèi)用不得低于每年改造生態(tài)環(huán)境總費(fèi)用的15%,但不得高于每年改造生態(tài)環(huán)境總費(fèi)用的25%.
若,,請(qǐng)你分析能否采用函數(shù)模型y=作為生態(tài)環(huán)境改造投資方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(I)若函數(shù)為奇函數(shù),求實(shí)數(shù)的值;
(II)若對(duì)任意的,都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知二次函數(shù)與交于兩點(diǎn)且,奇函數(shù),當(dāng)時(shí),與都在取到最小值.
(1)求的解析式;
(2)若與圖象恰有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)設(shè)的定義域?yàn)锳,求集合A;
(2)判斷函數(shù)在(1,+)上單調(diào)性,并用單調(diào)性的定義加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com