運(yùn)貨卡車(chē)以每小時(shí)x千米的勻速行駛130千米,按交通法規(guī)限制50≤x≤100(單位:千米/小時(shí)).假設(shè)汽油的價(jià)格是每升2元,而汽車(chē)每小時(shí)耗油()升,司機(jī)的工資是每小時(shí)14元.
(1)求這次行車(chē)總費(fèi)用y關(guān)于x的表達(dá)式;
(2)當(dāng)x為何值時(shí),這次行車(chē)的總費(fèi)用最低,并求出最低費(fèi)用的值.

(Ⅰ);(Ⅱ) km/h時(shí),最低費(fèi)用的值為.

解析試題分析:(Ⅰ)行車(chē)總費(fèi)用包括兩部分:一部分是油耗;另一部分是司機(jī)工資,首先表示出行車(chē)時(shí)間為,故司機(jī)工資為(元),耗油為(元),故行車(chē)總費(fèi)用為二部分的和;(Ⅱ),由基本不等式可求最小值,注意等號(hào)成立的條件(時(shí)取等號(hào)),如果等號(hào)取不到,可考慮利用對(duì)號(hào)函數(shù)的圖象,通過(guò)單調(diào)性求最值.
試題解析:(Ⅰ)設(shè)所用時(shí)間為,.
所以,這次行車(chē)總費(fèi)用y關(guān)于x的表達(dá)式是
(或,
(Ⅱ)
僅當(dāng),即時(shí),上述不等式中等號(hào)成立
答:當(dāng)km/h時(shí),這次行車(chē)的總費(fèi)用最低,最低費(fèi)用的值為26
考點(diǎn):1、函數(shù)的解析式;2、基本不等式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=x3+ax-2,(aR).
(l)若f(x)在區(qū)間(1,+)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若,且f(x0)=3,求x0的值;
(3)若,且在R上是減函數(shù),求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)在區(qū)間上有最大值,求實(shí)數(shù)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=,x∈[1,3],
(1)求f(x)的最大值與最小值;
(2)若于任意的x∈[1,3],t∈[0,2]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在圓上任取一點(diǎn),設(shè)點(diǎn)軸上的正投影為點(diǎn).當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),動(dòng)點(diǎn)滿足,動(dòng)點(diǎn)形成的軌跡為曲線.
(1)求曲線的方程;
(2)已知點(diǎn),若、是曲線上的兩個(gè)動(dòng)點(diǎn),且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)

(1)請(qǐng)?jiān)谒o的平面直角坐標(biāo)系中畫(huà)出函數(shù)的圖像;
(2)根據(jù)函數(shù)的圖像回答下列問(wèn)題:
①求函數(shù)的單調(diào)區(qū)間;
②求函數(shù)的值域;
③求關(guān)于的方程在區(qū)間上解的個(gè)數(shù).
(回答上述3個(gè)小題都只需直接寫(xiě)出結(jié)果,不需給出演算步驟)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

若函數(shù))在上的最大值為23,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知定義域?yàn)镽的函數(shù)是奇函數(shù).
(1)求,的值;
(2)證明函數(shù)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案