13.命題“?x∈R,f(x)>0”的否定為( 。
A.?x0∈R,f(x0)>0B.?x0∈R,f(x0)≤0C.?x0∈R,f(x0)≤0D.?x0∈R,f(x0)>0

分析 直接利用全稱命題的否定是特稱命題,寫出結(jié)果即可.

解答 解:因?yàn)槿Q命題的否定是特稱命題,所以命題“?x∈R,f(x)>0”的否定為:?x0∈R,f(x0)≤0.
故選:B.

點(diǎn)評(píng) 本題考查命題的否定,全稱命題與特稱命題的否定關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,$\overrightarrow{a}$與$\overrightarrow$夾角為$\frac{π}{3}$,若向量2$\overrightarrow{a}$+k$\overrightarrow$與$\overrightarrow{a}$+$\overrightarrow$垂直,求k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=f($\frac{1}{x}$),當(dāng)x∈[1,3]時(shí),f(x)=lnx,在區(qū)間[$\frac{1}{3}$,3]內(nèi),函數(shù)g(x)=f(x)-ax有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(0,$\frac{1}{e}$)B.($\frac{1}{2e}$,$\frac{1}{e}$)C.[$\frac{ln3}{3}$,$\frac{1}{e}$)D.($\frac{ln3}{3}$,$\frac{1}{e}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知關(guān)于x的方程x2-(m+1)x+m-1=0的兩根滿足x1∈(-1,2),x2∈(2,+∞),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知實(shí)數(shù)x,y滿足2x+y+5=0,那么$\sqrt{{x^2}+{{({y+3})}^2}}$的最小值為( 。
A.$\frac{{8\sqrt{5}}}{5}$B.$\frac{{6\sqrt{5}}}{5}$C.$\frac{{4\sqrt{5}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-3,4),則$\overrightarrow{a}$+$\overrightarrow$=( 。
A.(-1,5)B.(1,5)C.(-1,-3)D.(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知x、y的一組數(shù)據(jù)如表:
x23456
y34689
則由表中的數(shù)據(jù)算得線性回歸方程可能是(  )
A.$\widehat{y}=2x+2$B.$\widehat{y}=\frac{8}{5}x-\frac{2}{5}$C.$\widehat{y}=-\frac{3}{2}x+12$D.$\widehat{y}=2x-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知復(fù)數(shù)z=(a2-3a+2)+(1-a2)i(a∈R)為純虛數(shù),則z的虛部為(  )
A.-3B.2C.3D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.函數(shù)y=1ogax在x∈[1,16]的最大值比最小值大4,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案