9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{3}x|,0<x≤3}\\{-x+4,x>3}\end{array}\right.$,若a<b<c且f(a)=f(b)=f(c),則(ab+2)c的取值范圍是(27,81).

分析 利用a<b<c且f(a)=f(b)=f(c),得出ab=1,3<c<4即可求出(ab+2)c的取值范圍.

解答 解:由題意,∵f(a)=f(b)=f(c),
∴-log3a=log3b=-c+4
∴ab=1,0<-c+4<1
∴3<c<4
即(ab+2)c的取值范圍是(27,81).
故答案為:(27,81).

點評 本題考查分段函數(shù)的運用,考查學(xué)生的計算能力,正確運用分段函數(shù)是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列四個圖象中,能表示y是x的函數(shù)圖象的個數(shù)是( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)非負(fù)實數(shù)x,y滿足:$\left\{\begin{array}{l}{y≥x-1}\\{2x+y≤5}\end{array}\right.$,(2,1)是目標(biāo)函數(shù)z=ax+3y(a>0)取最大值的最優(yōu)解,則a的取值范圍是( 。
A.(0,6)B.(0,6]C.[6,+∞)D.(6,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)y=2cos(x-$\frac{π}{3}$)($\frac{6}{π}$≤x≤$\frac{2π}{3}$)的最小值和最大值分別是1,2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知f(x)=x2-1,g(x)=$\left\{\begin{array}{l}{x-1,x>0}\\{2-x,x<0}\end{array}\right.$
(1)求g(g(x))和g(f(x))的值;
(2)求f(g(x))和g(f(x))的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.函數(shù)f(x)=4x-2x+1
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間.
(2)若x∈[-2,2],求函數(shù)y=logaf(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=$\frac{{-2}^{x}+b}{{2}^{x+1}+a}$是定義域為R的奇函數(shù).
(1)求f(x)的解析式;
(2)求出函數(shù)f(x)的增減性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),F(xiàn)1,F(xiàn)2是其左、右焦點,點P為雙曲線的右支上一點,點M為圓心,圓M為三角形PF1F2的內(nèi)切圓,PM所在直線與x軸的交點坐標(biāo)為(1,0),與雙曲線的一條漸近線平行且距離為$\frac{\sqrt{2}}{2}$,則雙曲線C的離心率是( 。
A.$\sqrt{5}$B.2C.$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知x1=3-2i是實系數(shù)一元二次方程x2+px+q=0的一個根.
(1)求方程的另一個根及p、q的值;
(2)求x12+x22的值;
(3)求$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$的值;
(4)求x13+x23的值.

查看答案和解析>>

同步練習(xí)冊答案