【題目】甲、乙兩位同學(xué)參加某個(gè)知識答題游戲節(jié)目,答題分兩輪,第一輪為“選題答題環(huán)節(jié)”第二輪為“輪流坐莊答題環(huán)節(jié)”.首先進(jìn)行第一輪“選題答題環(huán)節(jié)”,答題規(guī)則是:每位同學(xué)各自從備選的5道不同題中隨機(jī)抽出3道題進(jìn)行答題,答對一題加10分,答錯(cuò)一題(不答視為答錯(cuò))減5分,已知甲能答對備選5道題中的每道題的概率都是,乙恰能答對備選5道題中的其中3道題;第一輪答題完畢后進(jìn)行第二輪“輪流坐莊答題環(huán)節(jié)”,答題規(guī)則是:先確定一人坐莊答題,若答對,繼續(xù)答下一題…,直到答錯(cuò),則換人(換莊)答下一題…以此類推.例如若甲首先坐莊,則他答第1題,若答對繼續(xù)答第2題,如果第2題也答對,繼續(xù)答第3題,直到他答錯(cuò)則換成乙坐莊開始答下一題,…直到乙答錯(cuò)再換成甲坐莊答題,依次類推兩人共計(jì)答完20道題游戲結(jié)束,假設(shè)由第一輪答題得分期望高的同學(xué)在第二輪環(huán)節(jié)中最先開始作答,且記第道題也由該同學(xué)(最先答題的同學(xué))作答的概率為),其中,已知供甲乙回答的20道題中,甲,乙兩人答對其中每道題的概率都是,如果某位同學(xué)有機(jī)會答第道題且回答正確則該同學(xué)加10分,答錯(cuò)(不答視為答錯(cuò))則減5分,甲乙答題相互獨(dú)立;兩輪答題完畢總得分高者勝出.回答下列問題

1)請預(yù)測第二輪最先開始作答的是誰?并說明理由

2)①求第二輪答題中,;

②求證為等比數(shù)列,并求)的表達(dá)式.

【答案】1)第二輪最先開始答題的是甲;詳見解析(2)①②證明見解析;

【解析】

(1)設(shè)甲選出的3道題答對的道數(shù)為,,設(shè)甲第一輪答題的總得分為,,,設(shè)乙第一輪得分為,求出的分布列,得到,比較兩者大小即可得出結(jié)論;

(2)依題意得,,利用相互獨(dú)立事件概率乘法公式和互斥事件概率加法公式求出;,從而,,由此能證明是等比數(shù)列,并求出的表達(dá)式.

(1)設(shè)甲選出的3道題答對的道數(shù)為,,

設(shè)甲第一輪答題的總得分為,,

所以;

(或法二:設(shè)甲的第一輪答題的總得分為,的所有可能取值為30,15,0,-15,

,

,

,

,

故得分為的分布列為:

30

15

0

-15

;)

設(shè)乙的第一輪得分為,的所有可能取值為30,15,0,

,,,

的分布列為:

30

15

0

,

,所以第二輪最先開始答題的是甲.

(2)①依題意知,,,

②依題意有(),

,(),

,

所以是以為首項(xiàng),為公比的等比數(shù)列,

,

().

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】冬天的北方室外溫度極低,若輕薄保暖的石墨烯發(fā)熱膜能用在衣服上,可愛的醫(yī)務(wù)工作者行動會更方便.石墨烯發(fā)熱膜的制作:從石墨中分離出石墨烯,制成石墨烯發(fā)熱膜.從石墨分離石墨烯的一種方法是化學(xué)氣相沉積法,使石墨升華后附著在材料上再結(jié)晶.現(xiàn)在有材料、材料供選擇,研究人員對附著在材料、材料上再結(jié)晶各做了50次試驗(yàn),得到如下等高條形圖.

1)根據(jù)上面的等高條形圖,填寫如下列聯(lián)表,判斷是否有99%的把握認(rèn)為試驗(yàn)成功與材料有關(guān)?

材料

材料

合計(jì)

成功

不成功

合計(jì)

2)研究人員得到石墨烯后,再制作石墨烯發(fā)熱膜有三個(gè)環(huán)節(jié):①透明基底及膠層;②石墨烯層;③表面封裝層.第一、二環(huán)節(jié)生產(chǎn)合格的概率均為,第三個(gè)環(huán)節(jié)生產(chǎn)合格的概率為,且各生產(chǎn)環(huán)節(jié)相互獨(dú)立.已知生產(chǎn)1噸的石墨烯發(fā)熱膜的固定成本為1萬元,若生產(chǎn)不合格還需進(jìn)行修復(fù),第三個(gè)環(huán)節(jié)的修復(fù)費(fèi)用為3000元,其余環(huán)節(jié)修復(fù)費(fèi)用均為1000.如何定價(jià),才能實(shí)現(xiàn)每生產(chǎn)1噸石墨烯發(fā)熱膜獲利可達(dá)1萬元以上的目標(biāo)?

附:參考公式:,其中.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程選講

在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸建立極坐標(biāo)系, 已知曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為

(Ⅰ)寫出曲線和直線的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線過點(diǎn)與曲線交于不同兩點(diǎn),的中點(diǎn)為,的交點(diǎn)為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓的左右頂點(diǎn),點(diǎn)為橢圓上一點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為,且.

1)若橢圓經(jīng)過圓的圓心,求橢圓的方程;

2)在(1)的條件下,若過點(diǎn)的直線與橢圓相交于不同的兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學(xué)對這四件參賽作品預(yù)測如下:

甲說:作品獲得一等獎”; 乙說:作品獲得一等獎”;

丙說:兩件作品未獲得一等獎”; 丁說:作品獲得一等獎”.

評獎揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每個(gè)國家對退休年齡都有不一樣的規(guī)定,從2018年開始我國關(guān)于延遲退休的話題一直在網(wǎng)上熱議,為了了解市民對“延遲退休”的態(tài)度,現(xiàn)從某地市民中隨機(jī)選取100人進(jìn)行調(diào)查,調(diào)查情況如下表:

年齡段(單位:歲)

被調(diào)查的人數(shù)

贊成的人數(shù)

1)從贊成“延遲退休”的人中任選1人,此人年齡在的概率為,求出表格中的值;

2)在被調(diào)查的人中,年齡低于35歲的人可以認(rèn)為“低齡人”,年齡不低于35歲的人可以認(rèn)為“非低齡人”,試作出是否贊成“延遲退休”與“低齡與否”的列聯(lián)表,并指出有無的把握認(rèn)為是否贊成“延遲退休”與“低齡與否”有關(guān),并說明理由.

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在罰球線投球命中的概率分別為,且各次投球相互之間沒有影響.

1)甲、乙兩人在罰球線各投球一次,求這二次投球中恰好命中一次的概率;

2)甲、乙兩人在罰球線各投球二次,求這四次投球中至少有一次命中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代有著輝煌的數(shù)學(xué)研究成果,其中的《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,有豐富多彩的內(nèi)容,是了解我國古代數(shù)學(xué)的重要文獻(xiàn),這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時(shí)期,某中學(xué)擬從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時(shí)期專著的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)要舉行元旦晚會,要求每班各出一個(gè)節(jié)目,其中高二年級一班學(xué)生中,有3名學(xué)生只會跳舞,有2名學(xué)生只會唱歌.

I)求從上述5人中選出一人會唱歌的概率;

II)寫出該班出一個(gè)舞蹈節(jié)目的所有基本事件.

查看答案和解析>>

同步練習(xí)冊答案