等差數(shù)列{an}中,a16+a17+a18=a9=-36,Sn為其前n項(xiàng)和.
(1)求Sn的最小值,指出Sn取最小時的n值
(2)數(shù)列bn=
3
an+66
,求數(shù)列{bnbn+1}的前n項(xiàng)和.
考點(diǎn):數(shù)列的求和,數(shù)列的函數(shù)特性
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件得a9=-36,a17=-12,從而求出Sn=-60n+
n(n-1)
2
×3
,利用配方法能求出n=20或n=21時,Sn最小值為S20=S21=-630.
(2)bn=
3
an+66
=
1
n+1
,bnbn+1=
1
n+1
-
1
n+2
=
1
n+1
-
1
n+2
,由此利用裂項(xiàng)求和法能求出數(shù)列{bnbn+1}的前n項(xiàng)和.
解答: 解:(1)由a16+a17+a18=a9=-36,
得a9=-36,a17=-12,
∴d=
a17-a9
17-9
=3.
首項(xiàng)a1=a9-8d=-60,an=3n-63.…(2分)
Sn=-60n+
n(n-1)
2
×3

=
3
2
(n-
41
2
)2-
3
2
×
412
2
,n∈N*,…(4分)
∴n=20或n=21時,Sn最小,最小值為S20=S21=-630.…(6分)
(2)bn=
3
an+66
=
1
n+1
,
bnbn+1=
1
n+1
-
1
n+2
=
1
n+1
-
1
n+2
,…(10分)
設(shè)數(shù)列{bnbn+1}的前n項(xiàng)和為Tn
Tn=
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n+1
-
1
n+2

=
1
2
-
1
n+2

=
n
2n+4
.…(12分)
點(diǎn)評:本題考查數(shù)列的前n項(xiàng)和的求法,是中檔題,解題時要認(rèn)真審題,注意裂項(xiàng)求和法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中真命題的個數(shù)有(  )個
(1)“奇函數(shù)的圖象關(guān)于原點(diǎn)對稱”的逆命題
(2)“若ab=0,則a=0或b=0”的否命題是“若ab≠0,則a≠0且b≠0”
(3)ab≠0是a≠0的充分條件
(4)橢圓的離心率越大,橢圓越扁.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={y|y=-x2+6x-3(0≤x≤4)},B={x|
x-3
x+4
≤0},已知C=A∩B.
(1)求C;
(2)若m,n∈C,求方程x2+2mx-n2+1=0有兩正實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若將函數(shù)f(x)=x5+7x4表示為f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…a5為實(shí)數(shù).
(Ⅰ)求a4的值;
(Ⅱ)求(x-
a4
x2
6展開式中二項(xiàng)式系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直角梯形ABCD中,∠ABC=∠BAD=90°,AB=BC=
1
2
AD
.梯形ABCD所在平面外有一點(diǎn)P,滿足PA⊥平面ABCD,PA=AB.
(1)求證:平面PCD⊥平面PAC;
(2)側(cè)棱PA上是否存在點(diǎn)E,使得BE∥平面PCD?若存在,指出E的位置并證明;若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
(1)
1-2sin10°cos10°
sin10°-
1-sin210°

(2)
2
<α<2π,化簡
1-cosα
1+cosα
+
1+cosα
1-cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正三棱柱ABC-A1B1C1中,BC=2,AA1=
6
,D、E分別是AA1、B1C1的中點(diǎn),
(Ⅰ)求證:面AA1E⊥面BCD;
(Ⅱ)求直線A1B1與平面BCD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(x,-y).
(1)若x,y分別表示將一枚質(zhì)地均勻的正方體骰子(六個面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時第一次、第二次出現(xiàn)的點(diǎn)數(shù),求滿足
a
b
=-1的概率;
(2)若x,y∈[1,6],求滿足
a
b
>0的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,面CDEF為正方形,面ABCD為等腰梯形,AB∥CD,AC=
3
,AB=2BC=2,AC⊥FB.
(Ⅰ)求證:AC⊥平面FBC;
(Ⅱ)線段AC上是否存在點(diǎn)M,使EA∥平面FDM?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案