分析 (1)直接利用函數(shù)值列出方程,求出$cos(α+\frac{π}{4})=\frac{3}{5}$,利用兩角和與差的三角函數(shù)求解即可.
(2)求出正切函數(shù)值,化簡所求的表達式為正切函數(shù)的形式,代入求解即可.
解答 解:(Ⅰ)$f(\frac{1}{2}α+\frac{π}{4})=\sqrt{2}sin(2(\frac{1}{2}α+\frac{π}{4})-\frac{π}{4})=\sqrt{2}sin(α+\frac{π}{4})=-\frac{{4\sqrt{2}}}{5}$.
∴$sin(α+\frac{π}{4})=-\frac{4}{5}$,
∵$\frac{17π}{12}<α<\frac{7π}{4}$,∴$\frac{5π}{3}<α+\frac{π}{4}<2π$,
又∵$sin(α+\frac{π}{4})=-\frac{4}{5}$,∴$cos(α+\frac{π}{4})=\frac{3}{5}$
∴$\begin{array}{c}cosα=cos[(α+\frac{π}{4})-\frac{π}{4}]=cos(α+\frac{π}{4})cos\sqrt{2}\frac{π}{4}+sin(α+\frac{π}{4})sin\frac{π}{4}\\ \begin{array}{\;}\end{array}\right.\end{array}\right.$
=$\frac{3}{5}•\frac{\sqrt{2}}{2}+(-\frac{4}{5})•\frac{\sqrt{2}}{2}=-\frac{\sqrt{2}}{10}$…(6分)
(Ⅱ)同理(Ⅰ),$sinα=-\frac{{7\sqrt{2}}}{10}$,∴$sin2α=2sinαcosα=\frac{7}{25}$,$tanα=\frac{sinα}{cosα}=7$,
∴原式=$\frac{{\frac{7}{25}+2•{{(-\frac{{7\sqrt{2}}}{10})}^2}}}{1-7}=-\frac{28}{75}$…(13分)
點評 本題考查兩角和與差的三角函數(shù),同角三角函數(shù)的基本關系式的應用,考查計算能力.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com