【題目】已知函數(shù),.
(Ⅰ)當(dāng)時(shí),求曲線在處的切線方程;
(Ⅱ)設(shè)函數(shù),試判斷函數(shù)是否存在最小值,若存在,求出最小值,若不存在,請(qǐng)說(shuō)明理由.
(Ⅲ)當(dāng)時(shí),寫(xiě)出與的大小關(guān)系.
【答案】(Ⅰ);(Ⅱ)見(jiàn)解析;(Ⅲ).
【解析】
(Ⅰ)先利用導(dǎo)數(shù)求出切線的斜率,然后再求得切點(diǎn)坐標(biāo),最后寫(xiě)出切線方程即可;
(Ⅱ)對(duì)a進(jìn)行分類討論,利用導(dǎo)數(shù)研究函數(shù)的最值,當(dāng)時(shí),函數(shù)不存在最小值;當(dāng)時(shí),函數(shù)有最小值.
(Ⅲ)當(dāng)時(shí),與的大小關(guān)系等價(jià)于與的大小關(guān)系,
令,通過(guò)研究的單調(diào)性和極值,進(jìn)而可得,從而可得結(jié)果.
(Ⅰ)當(dāng)時(shí),,,
所以,,因此,
又因?yàn)?/span>,所以切點(diǎn)為,
所以切線方程為;
(Ⅱ),,,
所以,
因?yàn)?/span>,所以;
(1)當(dāng),即時(shí),
因?yàn)?/span>,所以,故,
此時(shí)函數(shù)在上單調(diào)遞增,
所以函數(shù)不存在最小值;
(2)當(dāng),即時(shí),
令,因?yàn)?/span>,所以,
與在上的變化情況如下:
0 | + | ||
↘ | 極小值 | ↗ |
所以當(dāng)時(shí),有極小值,也是最小值,
并且,
綜上所述,
當(dāng)時(shí),函數(shù)不存在最小值;
當(dāng)時(shí),函數(shù)有最小值.
(Ⅲ)當(dāng)時(shí),與的大小關(guān)系等價(jià)于與的大小關(guān)系,
下面比較與的大小關(guān)系:
令,則,
當(dāng)時(shí),,當(dāng)時(shí),,
所以在上單調(diào)遞增,在上單調(diào)遞減,又,
故,即,故,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)當(dāng)時(shí),若不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)若存在,且當(dāng)時(shí),,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出以下四個(gè)命題:
①設(shè)是空間中的三條直線,若,,則.
②在面積為的的邊上任取一點(diǎn),則的面積大于的概率為.
③已知一個(gè)回歸直線方程為,則.
④數(shù)列為等差數(shù)列的充要條件是其通項(xiàng)公式為的一次函數(shù).
其中正確命題的充號(hào)為________.(把所有正確命題的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.且
.
(1)若,求角C的大小.
(2)若AC邊上的中線BM的長(zhǎng)為2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,過(guò)點(diǎn)的直線交拋物線于和兩點(diǎn).
(1)當(dāng)時(shí),求直線的方程;
(2)若過(guò)點(diǎn)且垂直于直線的直線與拋物線交于、兩點(diǎn),記與的面積分別為與,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為.以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為 (t為參數(shù))
(1)若,求曲線C的直角坐標(biāo)方程以及直線l的極坐標(biāo)方程;
(2)設(shè)點(diǎn),曲線C與直線 交于A、B兩點(diǎn),求的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某產(chǎn)品自生產(chǎn)并投入市場(chǎng)以來(lái),生產(chǎn)企業(yè)為確保產(chǎn)品質(zhì)量,決定邀請(qǐng)第三方檢測(cè)機(jī)構(gòu)對(duì)產(chǎn)品進(jìn)行質(zhì)量檢測(cè),并依據(jù)質(zhì)量指標(biāo)Z來(lái)衡量產(chǎn)品的質(zhì)量.當(dāng)時(shí),產(chǎn)品為優(yōu)等品;當(dāng)時(shí),產(chǎn)品為一等品;當(dāng)時(shí),產(chǎn)品為二等品.第三方檢測(cè)機(jī)構(gòu)在該產(chǎn)品中隨機(jī)抽取500件,繪制了這500件產(chǎn)品的質(zhì)量指標(biāo)的條形圖.用隨機(jī)抽取的500件產(chǎn)品作為樣本,估計(jì)該企業(yè)生產(chǎn)該產(chǎn)品的質(zhì)量情況,并用頻率估計(jì)概率.
(1)從該企業(yè)生產(chǎn)的所有產(chǎn)品中隨機(jī)抽取4件,求至少有1件優(yōu)等品的概率;
(2)現(xiàn)某人決定購(gòu)買(mǎi)80件該產(chǎn)品.已知每件成本1000元,購(gòu)買(mǎi)前,邀請(qǐng)第三方檢測(cè)機(jī)構(gòu)對(duì)要購(gòu)買(mǎi)的80件產(chǎn)品進(jìn)行抽樣檢測(cè),買(mǎi)家、企業(yè)及第三方檢測(cè)機(jī)構(gòu)就檢測(cè)方案達(dá)成以下協(xié)議:從80件產(chǎn)品中隨機(jī)抽出4件產(chǎn)品進(jìn)行檢測(cè),若檢測(cè)出3件或4件為優(yōu)等品,則按每件1600元購(gòu)買(mǎi),否則按每件1500元購(gòu)買(mǎi),每件產(chǎn)品的檢測(cè)費(fèi)用250元由企業(yè)承擔(dān).記企業(yè)的收益為X元,求X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=
(e為自然對(duì)數(shù)的底數(shù)),則f(e)=________,函數(shù)y=f(f(x))-1的零點(diǎn)個(gè)數(shù)為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com