分析 (1)使用待定系數(shù)法求出解析式;
(2)利用換元法轉化成二次函數(shù)求出.
解答 解:(1)設f(x)=ax2+bx+c,
∵f(0)=1,∴c=1,
∴f(x+1)-f(x)=2ax+a+b,
∵f(x+1)-f(x)=2x,
∴$\left\{\begin{array}{l}2a=2\\ a+b=0\end{array}\right.∴a=1,b=-1$,
∴f(x)=x2-x+1.
(2)∵f(x)=x2-x+1
∴$g(x)=f({log_a}x)={({log_a}x)^2}-{log_a}x+1$,$x∈[{a,\frac{1}{a}}]$.
令t=logax,
則g(x)=h(t)=t2-t+1,
∵$a≤x≤\frac{1}{a}又a>0且a≠1$∴$a<\frac{1}{a}即0<a<1$,
∴t=logax在$[{a,\frac{1}{a}}]$上單減,
∴-1≤t≤1,
又g(t)的對稱軸為$t=\frac{1}{2}$,
∴t=$\frac{1}{2}$時,hmin(t)=$\frac{3}{4}$,
∴t=-1時,hmax(t)=3,
∴g(x)的最大值是3,g(x)的最小值是$\frac{3}{4}$.
點評 本題考查了待定系數(shù)法求函數(shù)解析式,換元法解決復合函數(shù)問題,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
學生 | 1號 | 2號 | 3號 | 4號 | 5號 |
投中次數(shù) | 6 | 7 | 7 | 8 | 7 |
A. | 2 | B. | 0.4 | C. | 4 | D. | 0. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com