【題目】已知函數(shù)(其中.

1)討論函數(shù)的極值;

2)對任意,恒成立,求的取值范圍.

【答案】(1)答案不唯一,具體見解析(2)

【解析】

1)求出函數(shù)的定義域、導(dǎo)函數(shù),對分兩種情況討論可得;

2)由(1)知當(dāng)時(shí),不符合題意;當(dāng)時(shí),的最大值為要使恒成立,即是使成立,令利用導(dǎo)數(shù)分析其單調(diào)性,即可求得的取值范圍.

1的定義域?yàn)?/span>,,

當(dāng)時(shí),,所以上是減函數(shù),無極值.

當(dāng)時(shí),令,得,

上,,是增函數(shù);在上,,是減函數(shù).

所以有極大值,無極小值.

2)由(1)知,當(dāng)時(shí),是減函數(shù),令,則,

,不符合題意,

當(dāng)時(shí),的最大值為,

要使得對任意,恒成立,

即要使不等式成立,

有解.

,所以

,由,得.

上,,則上是增函數(shù);

上,,則上是減函數(shù).

所以,即,

上是減函數(shù),又,

要使成立,則,即的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線為焦點(diǎn),且過點(diǎn)

1)求雙曲線與其漸近線的方程

2)若斜率為1的直線與雙曲線相交于兩點(diǎn),且為坐標(biāo)原點(diǎn)),求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實(shí)數(shù),設(shè)函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)當(dāng)時(shí),若對任意的,均有,求的取值范圍.

注:為自然對數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,共享單車已經(jīng)悄然進(jìn)入了廣大市民的日常生活,并慢慢改變了人們的出行方式.為了更好地服務(wù)民眾,某共享單車公司在其官方中設(shè)置了用戶評價(jià)反饋系統(tǒng),以了解用戶對車輛狀況和優(yōu)惠活動(dòng)的評價(jià),現(xiàn)從評價(jià)系統(tǒng)中選出條較為詳細(xì)的評價(jià)信息進(jìn)行統(tǒng)計(jì),車輛狀況和優(yōu)惠活動(dòng)評價(jià)的列聯(lián)表如下:

對優(yōu)惠活動(dòng)好評

對優(yōu)惠活動(dòng)不滿意

合計(jì)

對車輛狀況好評

對車輛狀況不滿意

合計(jì)

(1)能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為優(yōu)惠活動(dòng)好評與車輛狀況好評之間有關(guān)系?

(2)為了回饋用戶,公司通過向用戶隨機(jī)派送騎行券,用戶可以將騎行券用于騎行付費(fèi),也可以通過轉(zhuǎn)贈(zèng)給好友某用戶共獲得了張騎行券,其中只有張是一元券現(xiàn)該用戶從這張騎行券中隨機(jī)選取張轉(zhuǎn)贈(zèng)給好友,求選取的張中至少有張是一元券的概率.

:下面的臨界值表僅供參考:

(參考公式: ,其中)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的奇函數(shù),當(dāng)時(shí),

則函數(shù)的所有零點(diǎn)之和為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)研究表明,人極易受情緒的影響,某選手參加74勝制的兵乒球比賽.

1)在不受情緒的影響下,該選手每局獲勝的概率為;但實(shí)際上,如果前一句獲勝的話,此選手該局獲勝的概率可提升到;而如果前一局失利的話,此選手該局獲勝的概率則降為,求該選手在前3局獲勝局?jǐn)?shù)的分布列及數(shù)學(xué)期望;

2)假設(shè)選手的三局比賽結(jié)果互不影響,且三局比賽獲勝的概率為,記為銳角的內(nèi)角,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的極坐標(biāo)方程為,曲線的參數(shù)方程為為參數(shù)).

1)求直線的直角坐標(biāo)方程和曲線的普通方程;

2)若過且與直線垂直的直線與曲線相交于、兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求的單調(diào)區(qū)間;

2)若對于定義域內(nèi)任意的,恒成立,求的取值范圍;

3)記,若在區(qū)間內(nèi)有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)若.

(ⅰ)求曲線在點(diǎn)處的切線方程;

(ⅱ)求函數(shù)在區(qū)間內(nèi)的極大值的個(gè)數(shù).

(2)若內(nèi)單調(diào)遞減,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案