3.求下列函數(shù)最大值和最小值,并寫出取得最值時(shí)x的集合:y=2sin(2x+$\frac{π}{3}$)(-$\frac{π}{6}$≤x≤$\frac{π}{6}$).

分析 由題意可得0≤2x+$\frac{π}{3}$≤$\frac{2π}{3}$,由三角函數(shù)的最值可得.

解答 解:∵-$\frac{π}{6}$≤x≤$\frac{π}{6}$,∴0≤2x+$\frac{π}{3}$≤$\frac{2π}{3}$,
∴當(dāng)2x+$\frac{π}{3}$=0即x=-$\frac{π}{6}$時(shí),函數(shù)取最小值0,此時(shí)x的集合為{-$\frac{π}{6}$};
當(dāng)2x+$\frac{π}{3}$=$\frac{π}{2}$即x=$\frac{π}{12}$時(shí),函數(shù)取最大值2,此時(shí)x的集合為{$\frac{π}{12}$}.

點(diǎn)評(píng) 本題考查三角函數(shù)的最值,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.用數(shù)學(xué)歸納法證明:34n+2+52n+1(n∈N)能被14整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)|$\overrightarrow{a}$|=2$\sqrt{2}$,|$\overrightarrow$|=$\frac{\sqrt{3}}{3}$,$\overrightarrow{a}$•$\overrightarrow$=$\sqrt{2}$,則<$\overrightarrow{a}$,$\overrightarrow$>=30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在直角坐標(biāo)系中,P點(diǎn)坐標(biāo)為(-2,2),寫出以射線OP為終邊的角的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.將下列命題改寫成“若p,則q”的形式,并判斷其真假.
(1)正方形是矩形又是菱形;
(2)同弧所對(duì)的圓周角不相等;
(3)方程x2-x+1=0有兩個(gè)實(shí)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知F1、C、D分別是橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)、上頂點(diǎn)、右頂點(diǎn),過坐標(biāo)原點(diǎn)的直線交橢圓E于點(diǎn)A,B,|AF1|+|BF1|=4,$\overrightarrow{{F}_{1}C}$•$\overrightarrow{CD}$=2$\sqrt{3}$-1.
(1)求橢圓E的方程;
(2)若過M(1,0)且斜率為$\frac{1}{2}$的直線1交橢圓E于P,Q兩點(diǎn),求△OPQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知α∈(π,$\frac{3}{2}$π),且tanα=2,求sinα+cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知sinα+cosα=$\frac{4}{5}$,求sinαcosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.?dāng)?shù)列{an}滿足a1=2,Sn=nan-n(n-1)
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)令bn=$\frac{1}{(n+1){a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案