分析 α∈(π,$\frac{3}{2}$π),且tanα=2,由同角三角函數(shù)關(guān)系式求出sinαcosα的值,從而能求出(sinα+cosα)2的值,由此能求出sinα+cosα的值.
解答 解:∵α∈(π,$\frac{3}{2}$π),且tanα=2,
∴sinαcosα=$\frac{sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{tanα}{ta{n}^{2}α+1}$=$\frac{2}{{2}^{2}+1}$=$\frac{2}{5}$,
∴(sinα+cosα)2=1+2sinαcosα=1+$\frac{4}{5}$=$\frac{9}{5}$,
∴sinα+cosα=-$\sqrt{\frac{9}{5}}$=-$\frac{3\sqrt{5}}{5}$.
點評 本題考查三角函數(shù)值的求法,是中檔題,解題時要認(rèn)真審題,注意同角三角函數(shù)關(guān)系式的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{{x}^{2}{+y}^{2}-4x+4}$+$\sqrt{{x}^{2}{+y}^{2}+4x+4}$=4 | B. | $\sqrt{{x}^{2}{+y}^{2}-4x+4}$+$\sqrt{{x}^{2}{+y}^{2}+4x+4}$=2 | ||
C. | $\sqrt{{x}^{2}{+y}^{2}-4x+4}$+$\sqrt{{x}^{2}{+y}^{2}+4x+4}$=6 | D. | $\sqrt{{x}^{2}{+y}^{2}-4x+4}$-$\sqrt{{x}^{2}{+y}^{2}+4x+4}$=2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com