【題目】設(shè)曲線y=xn+1(n∈N*)在點(1,1)處的切線與x軸的交點的橫坐標(biāo)為xn,令an=lgxn,則a1+a2+…+a99的值為( )
A. 1 B. 2 C. -2 D. -1
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,橢圓的長軸長為4.
(1)求橢圓的方程;
(2)已知直線與橢圓交于兩點,是否存在實數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計如表:
(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;
(2)根據(jù)線性回歸方程預(yù)測2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:,.(參考數(shù)據(jù): ,計算結(jié)果保留小數(shù)點后兩位)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商店為了解氣溫對某產(chǎn)品銷售量的影響,隨機記錄了該商店月份中天的日銷售量(單位:千克)與該地當(dāng)日最低氣溫(單位:℃)的數(shù)據(jù),如表所示:
(1)求與的回歸方程:
(2)判斷與之間是正相關(guān)還是負相關(guān);若該地月份某天的最低氣溫為,請用(1)中的回歸方程預(yù)測該商店當(dāng)日的銷售量.
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新高考方案的考試科目簡稱“”,“3”是指統(tǒng)考科目語數(shù)外,“1”指在首選科目“物理、歷史”中任選1門,“2”指在再選科目“化學(xué)、生物、政治和地理”中任選2門組成每位同學(xué)的6門高考科目.假設(shè)學(xué)生在選科中,選修每門首選科目的機會均等,選擇每門再選科目的機會相等.
(Ⅰ)求某同學(xué)選修“物理、化學(xué)和生物”的概率;
(Ⅱ)若選科完畢后的某次“會考”中,甲同學(xué)通過首選科目的概率是,通過每門再選科目的概率都是,且各門課程通過與否相互獨立.用表示該同學(xué)所選的3門課程在這次“會考”中通過的門數(shù),求隨機變量的概率分布和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在處的切線與直線垂直,求實數(shù)的值;
(2)若上存在一點,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的函數(shù)滿足:對任意的實數(shù)都成立,當(dāng)且僅當(dāng)時取等號,則稱函數(shù)是上的函數(shù),已知函數(shù)具有性質(zhì):(,)對任意的實數(shù)()都成立,當(dāng)且僅當(dāng)時取等號.
(1)試判斷函數(shù)(且)是否是上的函數(shù),說明理由;
(2)求證:是上的函數(shù),并求的最大值(其中、、是△三個內(nèi)角);
(3)若定義域為,
① 是奇函數(shù),證明:不是上的函數(shù);
② 最小正周期為,證明:不是上的函數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com