【題目】畫正六棱柱的直觀圖.
【答案】解: 畫法如下:
⑴畫軸:畫x′軸、y′軸、z′軸,使∠x′O′y′=45°,∠x′O′z′=90°;
⑵畫底面:畫正六邊形的直觀圖ABCDEF(O′為正六邊形的中心);
⑶畫側(cè)棱:過A,B,C,D,E,F(xiàn)各點(diǎn)分別作z′軸的平行線,在這些平行線上分別截取AA′,BB′,CC′,DD′,EE′,F(xiàn)F′,使AA′=BB′=CC′=DD′=EE′=FF′;
⑷連線成圖:連接A′B′,B′C′,C′D′,D′E′,E′F′,F(xiàn)′A′,并加以整理(去掉輔助線,將被遮擋的部分改為虛線),就得到正六棱柱ABCDEF-A′B′C′D′E′F′,如圖所示.
【解析】根據(jù)題意結(jié)合已知條件首先畫出坐標(biāo)軸使∠x′O′y′=45°,∠x′O′z′=90°;再結(jié)合直觀圖與實(shí)際圖形的畫法特點(diǎn):平行于x軸的長度不變,平行于y軸的長度變?yōu)樵瓉淼囊话,找到各個(gè)點(diǎn)在斜二測畫法坐標(biāo)系下的位置連接各個(gè)點(diǎn)即可得到正六棱柱的直觀圖。
【考點(diǎn)精析】認(rèn)真審題,首先需要了解斜二測法畫直觀圖(斜二測畫法的步驟:(1)平行于坐標(biāo)軸的線依然平行于坐標(biāo)軸;(2)平行于y軸的線長度變半,平行于x,z軸的線長度不變;(3)畫法要寫好).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算下列幾個(gè)式子,結(jié)果為 的序號(hào)是 . ①tan25°+tan35° tan25°tan35°,
② ,
③2(sin35°cos25°+sin55°cos65°),
④ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間為了規(guī)定工時(shí)定額,需要確定加個(gè)某零件所花費(fèi)的時(shí)間,為此作了四次實(shí)驗(yàn),得到的數(shù)據(jù)如下:
零件的個(gè)數(shù)x(個(gè)) | 2 | 3 | 4 | 5 |
加工的時(shí)間y(小時(shí)) | 2.5 | 3 | 4 | 4.5 |
(1)求出y關(guān)于x的線性回歸方程;
(2)試預(yù)測加工10個(gè)零件需要多少時(shí)間?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,BC⊥DC , AE⊥DC , M , N分別是AD , BE的中點(diǎn),將三角形ADE沿AE折起,則下列說法正確的是(填序號(hào)).
①不論D折至何位置(不在平面ABC內(nèi)),都有MN∥平面DEC;②不論D折至何位置,都有MN⊥AE;③不論D折至何位置(不在平面ABC內(nèi)),都有MN∥AB;④在折起過程中,一定存在某個(gè)位置,使EC⊥AD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方體ABCD-A′B′C′D′中:
(1)求二面角D′-AB-D的大小;
(2)若M是C′D′的中點(diǎn),求二面角M-AB-D的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{Sn}的前n項(xiàng)和為Tn,滿足Tn=2Sn-n2,n∈N*.
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上且以2為周期的偶函數(shù),當(dāng)0≤x≤1,f(x)=x2 . 如果函數(shù)g(x)=f(x)﹣(x+m)有兩個(gè)零點(diǎn),則實(shí)數(shù)m的值為( )
A.2k(k∈Z)
B.2k或2k+ (k∈Z)
C.0
D.2k或2k﹣ (k∈Z)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 , ,設(shè)函數(shù) .
(1)求函數(shù) 的單調(diào)遞增區(qū)間;
(2)在 中,邊 分別是角 的對邊,角 為銳角,若
, , 的面積為 ,求邊 的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三棱錐V﹣ABC中,VA=VB=AC=BC=2,AB=2 ,VC=1,線段AB的中點(diǎn)為D.
(1)求證:平面VCD⊥平面ABC;
(2)求三棱錐V﹣ABC的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com