【題目】路燈距地面8 m,一個(gè)身高為1.6 m的人以84 m/min的速度在地面上從路燈在地面上射影點(diǎn)C沿某直線離開路燈.

(1)求身影的長度y與人距路燈的距離x之間的關(guān)系式;

(2)求人離開路燈的第一個(gè)10 s內(nèi)身影的平均變化率.

【答案】(1);(2).

【解析】試題分析:(1)做出圖像,設(shè)人從C點(diǎn)運(yùn)動(dòng)到B處的路程為x m,AB為身影長度,AB的長度為y m,根據(jù)平行線分線段成比例定理,得到AB,AC與BE,CD的關(guān)系,即可表示出x與y之間的關(guān)系;

(2)結(jié)合(1)中的關(guān)系求出即可.

試題解析:

(1)如圖所示,設(shè)人從C點(diǎn)運(yùn)動(dòng)到B處的路程為x m,AB為身影長度,AB的長度為y m,

由于CDBE,則,

,所以yf(x)=x.

(2)在[0,10]上身影的平均變化率為:

.

即人離開路燈的第一個(gè)10 s內(nèi)身影的平均變化率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5kg,乙材料1kg,用5個(gè)工時(shí);生產(chǎn)一件產(chǎn)品B需要甲材料0.5kg乙材料0.3kg,用3個(gè)工時(shí).生產(chǎn)一件產(chǎn)品A的利潤為2100元,生產(chǎn)一件產(chǎn)品B的利潤為900元.該企業(yè)現(xiàn)有甲材料150kg,乙材料90kg,求在不超過600個(gè)工時(shí)的條件下,生產(chǎn)產(chǎn)品A和產(chǎn)品B的利潤之和的最大值(元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【廣東省佛山市2017屆高三4月教學(xué)質(zhì)量檢測(cè)(二)數(shù)學(xué)文】已知橢圓 )的焦距為4,左、右焦點(diǎn)分別為,且與拋物線 的交點(diǎn)所在的直線經(jīng)過.

(Ⅰ)求橢圓的方程;

(Ⅱ)過的直線交于, 兩點(diǎn),與拋物線無公共點(diǎn),求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2015高考陜西文數(shù)】隨機(jī)抽取一個(gè)年份,對(duì)西安市該年4月份的天氣情況進(jìn)行統(tǒng)計(jì),結(jié)果如下:

日期

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

天氣

日期

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

天氣

(I)在4月份任取一天,估計(jì)西安市在該天不下雨的概率;

(II)西安市某學(xué)校擬從4月份的一個(gè)晴天開始舉行連續(xù)兩天的運(yùn)動(dòng)會(huì),估計(jì)運(yùn)動(dòng)會(huì)期間不下雨的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知圓和直線.

(Ⅰ)求的參數(shù)方程以及圓上距離直線最遠(yuǎn)的點(diǎn)坐標(biāo);

(Ⅱ)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,將圓上除點(diǎn)以外所有點(diǎn)繞著逆時(shí)針旋轉(zhuǎn)得到曲線,求曲線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 經(jīng)過點(diǎn),左右焦點(diǎn)分別為,圓與直線相交所得弦長為2. 

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)是橢圓上不在軸上的一個(gè)動(dòng)點(diǎn), 為坐標(biāo)原點(diǎn),過點(diǎn)的平行線交橢圓、兩個(gè)不同的點(diǎn).

(1)試探究的值是否為一個(gè)常數(shù)?若是,求出這個(gè)常數(shù);若不是,請(qǐng)說明理由.

(2)記的面積為 的面積為,令,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

(1)當(dāng)時(shí),解不等式;

(2)若關(guān)于的方程的解集中恰有一個(gè)元素,求的取值范圍;

(3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為平行四邊形, , , 底面.

(1)證明:

(2)設(shè),求點(diǎn)到面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)要求求值:
(1)用輾轉(zhuǎn)相除法求123和48的最大公約數(shù).
(2)用更相減損術(shù)求80和36的最大公約數(shù).
(3)把89化為二進(jìn)制數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案