分析 (1)由于函數(shù)f(x)是定義在R上的奇函數(shù),可得f(-x)=-f(x),f(0)=0.再利用當(dāng)x>0時(shí),f(x)=x(x+1)+1,可得x<0時(shí)的解析式.
(2)畫出函數(shù)圖象即可得出單調(diào)性.
解答 解:(1)∵函數(shù)f(x)是定義在R上的奇函數(shù),
∴f(-x)=-f(x),f(0)=0.
設(shè)x<0,則-x>0,
∵當(dāng)x>0時(shí),f(x)=x(x+1)+1,
∴f(-x)=-x(1-x)+1=x(x-1)+1,
∴f(x)=-f(-x)=x(1-x)-1.
∴f(x)=$\left\{\begin{array}{l}{x(x+1)+1,x>0}\\{0,x=0}\\{x(1-x)-1,x<0}\end{array}\right.$.
(2)如圖所示,f(x)=$\left\{\begin{array}{l}{(x+\frac{1}{2})^{2}+\frac{3}{4},x>0}\\{0,x=0}\\{-(x-\frac{1}{2})^{2}-\frac{3}{4},x<0}\end{array}\right.$,
可知:函數(shù)f(x)在R上單調(diào)遞增.
點(diǎn)評(píng) 本題考查了函數(shù)的奇偶性與單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
銷售單價(jià)/元 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
日均銷售量/桶 | 480 | 440 | 400 | 360 | 320 | 280 | 240 |
A. | 10.5 | B. | 6.5 | C. | 12.5 | D. | 11.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | M=N | B. | M≠N | C. | M?N | D. | N?M |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com