已知不等式組
x+y-6≤0
x-y≥0
y≥2
表示平面區(qū)域D,若直線kx-y-1=0經(jīng)過平面區(qū)域D,則k的取值范圍是( 。
A、[
1
4
3
2
]
B、[
3
4
,2]
C、[
3
4
,
3
2
]
D、[1,2]
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:由題意,做出不等式組對應(yīng)的可行域,由于函數(shù)y=kx+1的圖象是過點A(0,-1),斜率為k的直線l,故由圖即可得出其范圍.
解答: 解:作出
x+y-6≤0
x-y≥0
y≥2
的可行域,如圖.
因為函數(shù)y=kx-1的圖象是過點A(0,-1),且斜率為k的直線l,由圖知,當(dāng)直線l過點C,k取最大值,由
x-y=0
y=2
,解得C(2,2),k取最大值
3
2
,
當(dāng)直線l過點B時,k取得最小值,由
x+y-6=0
y=2
,解得B(4,0),k取最小值-
3
4
,故k∈[
3
4
,
3
2
].

故選:C.
點評:本題考查簡單線性規(guī)劃,利用線性規(guī)劃的知識用圖象法求出斜率的最大值與最小值.這是一道靈活的線性規(guī)劃問題,還考查了數(shù)形結(jié)合的思想,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線mx2-ny2=1(mn>0)的一條漸近線方程為y=
3
4
x,此雙曲線的離心率為( 。
A、
5
3
B、
5
4
C、
5
4
5
3
D、
7
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式
1
x2
1
4x-3
的解集為( 。
A、(0,
3
4
)∪[1,
3
]
B、(-∞,0)∪(0,
3
4
]
C、(-∞,
3
4
)∪(1,
3
]
D、(-∞,0)∪(0,
3
4
)∪[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=-x2+2x的單調(diào)遞減區(qū)間為( 。
A、(-1,2)
B、(1,2)
C、(-∞,1)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,點(a,b)在直線x(sinA-sinB)+ysinB=csinC上.則角C的值為(  )
A、
π
6
B、
π
3
C、
π
4
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下三個命題:
①已知P(m,4)是橢圓
x2
a2
+
y2
b2
=1(a>b>0)上的一點,F(xiàn)1、F2是左、右兩個焦點,若△PF1F2的內(nèi)切圓的半徑為
3
2
,則此橢圓的離心率e=
4
5
;
②過雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點F作斜率為
3
的直線交C于A,B兩點,若
AF
=4
FB
,則該雙曲線的離心率e=
6
5
;
③已知F1(-2,0)、F2(2,0),P是直線x=-1上一動點,若以F1、F2為焦點且過點P的雙曲線的離心率為e,則e的取值范圍是[2,+∞).
其中真命題的個數(shù)為( 。
A、3個B、2個C、1個D、0個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2分別為雙曲線
x2
a2
-
y2
b2
=1(a,b>0)的左、右焦點,動點P滿足
PF1
PF2
=0,若直線l:3x-4y-10=0與點P的軌跡有且只有一個公共點,則下列結(jié)論正確的是( 。
A、a2+b2=2
B、a2-b2=2
C、a2+b2=4
D、a2-b2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn且滿足S24>0,S25<0,記bn=|an|,則bn最小時,n的值為( 。
A、11B、12C、13D、14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=ex(ax2+x+1),且曲線y=f(x)在x=1處的切線與x軸平行.
(Ⅰ)求a的值,并討論f(x)的單調(diào)性;
(Ⅱ)證明:對任意x1,x2∈[0,1],有|f(x1)-f(x2)|<2.

查看答案和解析>>

同步練習(xí)冊答案