【題目】已知橢圓的焦距為2,過右焦點和短軸一個端點的直線的斜率為,為坐標原點.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)斜率為的直線與橢圓相交于兩點,記面積的最大值為,證明:

【答案】(1)(2)見解析

【解析】試題分析】(1)依據(jù)題設(shè)條件建立方程組求解;(2)先建立直線的方程。然后與橢圓方程聯(lián)立,再借助坐標之間的關(guān)系建立關(guān)于三角形面積的函數(shù)關(guān)系,通過計算進行推證:

(Ⅰ)解:由題意,得橢圓的半焦距,右焦點,上頂點,所以直線的斜率,解得,由,得,所以橢圓的方程為.

(Ⅱ)證明:設(shè)直線的方程為,其中, ,由方程組 所以

,于是有 ,所以

,因為原點到直線的距離 ,

所以

時, ,所以當的最大值,驗證知成立;

時,所以當時的最大值

驗證知成立;所以

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E=1(ab>0),其左右焦點為F1F2,過F2的直線l交橢圓E于A,B兩點,△AB F1的周長為8,且△AF1F2的面積最大時,△AF1F2為正三角形。

(1)求橢圓E的方程;

(2)若MN是橢圓E經(jīng)過 原點的弦,MN||AB,求證: 為定值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016年巴西奧運會的周邊商品有80%左右為中國制造,所有的廠家都是經(jīng)過層層篩選才能獲此殊榮.甲、乙兩廠生產(chǎn)同一產(chǎn)品,為了解甲、乙兩廠的產(chǎn)品質(zhì)量,以確定這一產(chǎn)品最終的供貨商,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品共98件中分別抽取9件和5件,測量產(chǎn)品中的微量元素的含量(單位:毫克).下表是從乙廠抽取的5件產(chǎn)品的測量數(shù)據(jù):

編號

1

2

3

4

5

169

178

166

175

180

75

80

77

70

81

(1)求乙廠生產(chǎn)的產(chǎn)品數(shù)量:

(2)當產(chǎn)品中的微量元素滿足:,且時,該產(chǎn)品為優(yōu)等品.用上述樣本數(shù)據(jù)估計乙廠生產(chǎn)的優(yōu)等品的數(shù)量:

(3)從乙廠抽出的上述5件產(chǎn)品中,隨機抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是邊長為2的菱形,平面,的中點.

(1)求證:平面平面;

(2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線經(jīng)過點,且圓的圓心到的距離為.

(1)求直線被該圓所截得的弦長;

(2)求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“石頭、剪刀、布”是個廣為流傳的游戲,游戲時甲乙雙方每次做“石頭”“剪刀”“布”三種手勢中的一種,規(guī)定:“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,同種手勢不分勝負須繼續(xù)比賽,假設(shè)甲乙兩人都是等可能地做這三種手勢.

(1)列舉一次比賽時兩人做出手勢的所有可能情況;

(2)求一次比賽甲取勝的概率,并說明“石頭、剪刀、布”這個廣為流傳的游戲的公平性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】公元263年左右,我國古代數(shù)學家劉徽用圓內(nèi)接正多邊形的面積去逼近圓的面積求圓周率,劉徽稱這個方法為“割圓術(shù)”,并且把“割圓術(shù)”的特點概括為“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,下圖是根據(jù)劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,若運行該程序,則輸出的的值為( )(參考數(shù)據(jù): ,

A. 24 B. 30 C. 36 D. 48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=ex﹣ax2,曲線y=f(x)在(1,f(1))處的切線方程為y=bx+1.

(1)求a,b的值;

(2)求f(x)在[0,1]上的最大值;

(3)證明:當x>0時,ex+(1﹣e)x﹣xlnx﹣1≥0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且函數(shù)處都取得極值.

1)求實數(shù)的值;

2)對任意,方程存在三個實數(shù)根,求實數(shù)c的取值范圍.

查看答案和解析>>

同步練習冊答案