9.如圖,設(shè)E,F(xiàn)分別是Rt△ABC的斜邊BC上的兩個三等分點,已知AB=3,AC=6,則$\overrightarrow{AE}$•$\overrightarrow{AF}$=( 。 
A.8B.10C.11D.12

分析 建立平面直角坐標系,用坐標表示出$\overrightarrow{AE}$,$\overrightarrow{AF}$,代入向量的數(shù)量積公式計算.

解答 解:以BC為x軸,以B為坐標原點建立平面直角坐標系,如圖

∵AB=3,AC=6,∠BAC=90°,BC=3$\sqrt{5}$,
∵$\frac{AB}{sinC}$=$\frac{AC}{sinB}$,sinC=cosB
∴sinB=2cosB,
∵sin2B+cos2B=1
∴sinB=$\frac{2\sqrt{5}}{5}$,cosB=$\frac{\sqrt{5}}{5}$
∴A($\frac{3\sqrt{5}}{5}$,$\frac{6\sqrt{5}}{5}$),E($\sqrt{5}$,0),F(xiàn)(2$\sqrt{5}$,0).
∴$\overrightarrow{AE}$=($\frac{2\sqrt{5}}{5}$,-$\frac{6\sqrt{5}}{5}$),
$\overrightarrow{AF}$=($\frac{7\sqrt{5}}{5}$,-$\frac{6\sqrt{5}}{5}$),
∴$\overrightarrow{AE}$•$\overrightarrow{AF}$=$\frac{2\sqrt{5}}{5}$•$\frac{7\sqrt{5}}{5}$+(-$\frac{6\sqrt{5}}{5}$)2=10.
故選B.

點評 本題考查了平面向量在幾何中的應(yīng)用,建立合適坐標系是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知數(shù)列{an}的前n項和Sn滿足條件:Sn+an=$\frac{{n}^{2}+1}{{n}^{2}+n}$.
(1)求a1、a2、a3的值;
(2)猜測數(shù)列{an}的通項公式,并給出證明;
(3)求$\underset{lim}{n→∞}$n2an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.在矩形ABCD中,已知$AB=\sqrt{3},AD=2$,點E是BC的中點,點F在CD上,若$\overrightarrow{AB}•\overrightarrow{AF}$=$\sqrt{3}$,則$\overrightarrow{AE}•\overrightarrow{BF}$的值是$\sqrt{3}$-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.關(guān)于函數(shù)f(x)=2x的圖象變換正確的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.等差數(shù)列{an}、{bn}中的前n項和分別為Sn、Tn,$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n}{3n+1}$,則$\frac{{a}_{10}}{_{10}}$=( 。
A.$\frac{20}{31}$B.$\frac{19}{29}$C.$\frac{17}{28}$D.$\frac{16}{27}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知定義在(0,+∞)上的函數(shù)f(x)對任意正數(shù)p,q都有$f(pq)=f(p)+f(q)-\frac{1}{2}$,當x>4時,f(x)>$\frac{3}{2}$,且f($\frac{1}{2}$)=0.
(1)求f(2)的值;
(2)證明:函數(shù)f(x)在(0,+∞)上是增函數(shù);
(3)解關(guān)于x的不等式f(x)+f(x+3)>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在△ABC中,$C=\frac{π}{3}$,則cos2A+cos2B的最大值和最小值分別是( 。
A.$1-\frac{{\sqrt{3}}}{2},\frac{3}{2}$B.$\frac{1}{2}$,$\frac{5}{4}$C.$1-\frac{{\sqrt{3}}}{2},1+\frac{{\sqrt{3}}}{2}$D.$1-\frac{{\sqrt{3}}}{2},1+\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若集合A={x|x≤2},a=$\sqrt{3}$,則下列結(jié)論中正確的是( 。
A.a⊆AB.{a}⊆AC.a∉AD.{a}∈A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設(shè)數(shù)列{an}的前n項和為Sn,已知a1=2,a2=8,Sn+1+4Sn-1=5Sn(n≥2),Tn是數(shù)列{log2an}的前n項和.
(1)求數(shù)列{an}的通項公式;
(2)求滿足$(1-\frac{1}{T_2})(1-\frac{1}{T_3})…(1-\frac{1}{T_n})≥\frac{1009}{2016}$的最大正整數(shù)n的值.

查看答案和解析>>

同步練習冊答案